Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338783

RESUMO

Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet ß-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early ß-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. ß-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between ß-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Mitocondriais , Estado Pré-Diabético , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Comunicação
2.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203312

RESUMO

Diet-related lipotoxic stress is a significant driver of skeletal muscle insulin resistance (IR) and type 2 diabetes (T2D) onset. ß2-adrenergic receptor (ß-AR) agonism promotes insulin sensitivity in vivo under lipotoxic stress conditions. Here, we established an in vitro paradigm of lipotoxic stress using palmitate (Palm) in rat skeletal muscle cells to determine if ß-AR agonism could cooperate with double C-2-like domain beta (DOC2B) enrichment to promote skeletal muscle insulin sensitivity under Palm-stress conditions. Previously, human T2D skeletal muscles were shown to be deficient for DOC2B, and DOC2B enrichment resisted IR in vivo. Our Palm-stress paradigm induced IR and ß-AR resistance, reduced DOC2B protein levels, triggered cytoskeletal cofilin phosphorylation, and reduced GLUT4 translocation to the plasma membrane (PM). By enhancing DOC2B levels in rat skeletal muscle, we showed that the deleterious effects of palmitate exposure upon cofilin, insulin, and ß-AR-stimulated GLUT4 trafficking to the PM and glucose uptake were preventable. In conclusion, we revealed a useful in vitro paradigm of Palm-induced stress to test for factors that can prevent/reverse skeletal muscle dysfunctions related to obesity/pre-T2D. Discerning strategies to enrich DOC2B and promote ß-AR agonism can resist skeletal muscle IR and halt progression to T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Animais , Ratos , Músculo Esquelético , Fatores de Despolimerização de Actina , Palmitatos/farmacologia , Glucose , Proteínas de Ligação ao Cálcio , Proteínas do Tecido Nervoso
3.
Indoor Air ; 32(3): e13013, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347791

RESUMO

The association between particulate matter and children's increased blood pressure is inconsistent, and few studies have evaluated indoor exposure, accounting for time-activity. The present study aimed to examine the association between personal short-term exposure to PM2.5 and blood pressure in children. We conducted a panel study with up to three physical examinations during different seasons of 2018 (spring, summer, and fall) among 52 children. The indoor PM2.5 concentration was continuously measured at home and classroom of each child using indoor air quality monitors. The outdoor PM2.5 concentration was measured from the nearest monitoring station. We constructed a mixed effect model to analyze the association of short-term indoor and outdoor PM2.5 exposure accounting for time-activity of each participant with blood pressure. The average PM2.5 concentration was 34.3 ± 9.2 µg/m3 and it was highest in the spring. The concentration measured at homes was generally higher than that measured at outdoor monitoring station. A 10-µg/m3 increment of the up to previous 3-day mean (lag0-3) PM2.5 concentration was associated with 2.7 mmHg (95%CI = 0.8, 4.0) and 2.1 mmHg (95%CI = 0.3, 4.0) increases in systolic and diastolic blood pressure, respectively. In a panel study comprehensively evaluating both indoor and outdoor exposures, which enabled more accurate exposure assessment, we observed a statistically significant association between blood pressure and PM2.5 exposure in children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Pressão Sanguínea , Criança , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise
4.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673206

RESUMO

Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic ß-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to ß-cells improves whole-body glucose homeostasis, enhances ß-cell function, and surprisingly, protection of ß-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of ß-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina/genética , Células Secretoras de Insulina/patologia , Proteínas SNARE/genética , Transdução de Sinais
5.
Diabetologia ; 62(5): 845-859, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707251

RESUMO

AIMS/HYPOTHESIS: Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain ß (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS: Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS: We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION: These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Idoso , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Cinesinas , Masculino , Camundongos , Pessoa de Meia-Idade , Ligação Proteica , Domínios Proteicos
6.
Diabetologia ; 59(10): 2145-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27394663

RESUMO

AIMS/HYPOTHESIS: Human islets from type 2 diabetic donors are reportedly 80% deficient in the p21 (Cdc42/Rac)-activated kinase, PAK1. PAK1 is implicated in beta cell function and maintenance of beta cell mass. We questioned the mechanism(s) by which PAK1 deficiency potentially contributes to increased susceptibility to type 2 diabetes. METHODS: Non-diabetic human islets and INS 832/13 beta cells cultured under diabetogenic conditions (i.e. with specific cytokines or under glucolipotoxic [GLT] conditions) were evaluated for changes to PAK1 signalling. Combined effects of PAK1 deficiency with GLT stress were assessed using classic knockout (Pak1 (-/-) ) mice fed a 45% energy from fat/palmitate-based, 'western' diet (WD). INS 832/13 cells overexpressing or depleted of PAK1 were also assessed for apoptosis and signalling changes. RESULTS: Exposure of non-diabetic human islets to diabetic stressors attenuated PAK1 protein levels, concurrent with increased caspase 3 cleavage. WD-fed Pak1 knockout mice exhibited fasting hyperglycaemia and severe glucose intolerance. These mice also failed to mount an insulin secretory response following acute glucose challenge, coinciding with a 43% loss of beta cell mass when compared with WD-fed wild-type mice. Pak1 knockout mice had fewer total beta cells per islet, coincident with decreased beta cell proliferation. In INS 832/13 beta cells, PAK1 deficiency combined with GLT exposure heightened beta cell death relative to either condition alone; PAK1 deficiency resulted in decreased extracellular signal-related kinase (ERK) and B cell lymphoma 2 (Bcl2) phosphorylation levels. Conversely, PAK1 overexpression prevented GLT-induced cell death. CONCLUSIONS/INTERPRETATION: These findings suggest that PAK1 deficiency may underlie an increased diabetic susceptibility. Discovery of ways to remediate glycaemic dysregulation via altering PAK1 or its downstream effectors offers promising opportunities for disease intervention.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Glicemia/metabolismo , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Immunoblotting , Técnicas In Vitro , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação/genética , Fosforilação/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinases Ativadas por p21/genética
7.
Pediatr Res ; 77(2): 316-25, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25412163

RESUMO

BACKGROUND: Children exposed to gestational diabetes mellitus (GDM) during pregnancy are at increased risk of obesity, diabetes, and hypertension. Our goal was to identify metabolic and hematopoietic alterations after intrauterine exposure to maternal hyperglycemia that may contribute to the pathogenesis of chronic morbidities. METHODS: Streptozotocin treatment induced maternal hyperglycemia during the last third of gestation in rat dams. Offspring of control mothers (OCM) and diabetic mothers (ODM) were evaluated for weight, glucose tolerance, insulin tolerance, and hematopoiesis defects. The effects of aging were examined in normal and high-fat diet (HFD)-fed young (8-wk-old) and aged (11-mo-old) OCM and ODM rats. RESULTS: Young adult ODM males on a normal diet, but not females, displayed improved glucose tolerance due to increased insulin levels. Aged ODM males and females gained more weight than OCM on a HFD and had worse glucose tolerance. Aged ODM males fed a HFD were also neutrophilic. Increases in bone marrow cellularity and myeloid progenitors preceded neutrophilia in ODM males fed a HFD. CONCLUSION: When combined with other risk factors like HFD and aging, changes in glucose metabolism and hematopoiesis may contribute to the increased risk of obesity, type 2 diabetes, and hypertension observed in children of GDM mothers.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Gestacional/metabolismo , Doenças Fetais/metabolismo , Hematopoese/fisiologia , Fatores Etários , Animais , Peso Corporal/fisiologia , Feminino , Doenças Fetais/etiologia , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Masculino , Gravidez , Ratos , Fatores de Risco
8.
Diabetologia ; 57(7): 1476-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24705606

RESUMO

AIMS/HYPOTHESIS: Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain ß (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS: Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS: Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Exocitose/fisiologia , Secreção de Insulina , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Pâncreas/metabolismo , Proteínas R-SNARE/metabolismo
9.
Cell Mol Life Sci ; 70(16): 2815-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23052216

RESUMO

The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.


Assuntos
Adipócitos/metabolismo , Insulina/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Receptor de Insulina/metabolismo , Animais , Humanos
10.
Front Endocrinol (Lausanne) ; 15: 1451279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39497805

RESUMO

Introduction: Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in ß-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional ß-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on ß-cell dys(function). Objective: Our objective was to evaluate the DOC2B secretome of ß-cells. In addition to soluble extracellular protein, we assessed DOC2B localized within membrane-delimited nanoparticles - extracellular vesicles (EVs). Moreover, in rat clonal ß-cells, we probed domains required for DOC2B sorting into EVs. Method: Using Single Extracellular VEsicle Nanoscopy, we quantified EVs derived from clonal ß-cells (human EndoC-ßH1, rat INS-1 832/13, and mouse MIN6); two other cell types known to regulate glucose homeostasis and functionally utilize DOC2B (skeletal muscle rat myotube L6-GLUT4myc and human neuronal-like SH-SY5Y cells); and human islets sourced from individuals with no diabetes (ND). EVs derived from ND human plasma, ND human islets, and cell lines were isolated with either size exclusion chromatography or differential centrifugation. Isolated EVs were comprehensively characterized using dotblots, transmission electron microscopy, nanoparticle tracking analysis, and immunoblotting. Results: DOC2B was present within EVs derived from ND human plasma, ND human islets, and INS-1 832/13 ß-cells. Compared to neuronal-like SH-SY5Y cells and L6-GLUT4myc myotubes, clonal ß-cells (EndoC-ßH1, INS-1 832/13, and MIN6) produced significantly more EVs. DOC2B levels in EVs (over whole cell lysates) were higher in INS-1 832/13 ß-cells compared to L6-GLUT4myc myotubes; SH-SY5Y neuronal-like cells did not release appreciable DOC2B. Mechanistically, we show that DOC2B was localized to the EV lumen; the tandem C2 domains were sufficient to confer sorting to INS-1 832/13 ß-cell EVs. Discussion: Clonal ß-cells and ND human islets produce abundant EVs. In cell culture, appreciable DOC2B can be packaged into EVs, and a small fraction is excreted as a soluble protein. While DOC2B-laden EVs and soluble protein are present in ND plasma, further studies will be necessary to determine if DOC2B originating from ß-cells significantly contributes to the plasma secretome.


Assuntos
Proteínas de Ligação ao Cálcio , Vesículas Extracelulares , Células Secretoras de Insulina , Proteínas do Tecido Nervoso , Células Secretoras de Insulina/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Ratos , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Secreção de Insulina
11.
Diabetes ; 73(9): 1447-1461, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905124

RESUMO

Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain ß-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of ß-cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces ß-cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of ß-cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared with controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine ß-cells in mice.


Assuntos
Células Acinares , Envelhecimento , Células Secretoras de Insulina , Camundongos Knockout , Fator Trefoil-2 , Animais , Células Secretoras de Insulina/metabolismo , Camundongos , Fator Trefoil-2/metabolismo , Fator Trefoil-2/genética , Masculino , Células Acinares/metabolismo , Feminino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Secreção de Insulina/fisiologia , Secreção de Insulina/genética , Fatores Trefoil/metabolismo , Fatores Trefoil/genética , Peptídeos/metabolismo
12.
J Biol Chem ; 287(31): 25821-33, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22685295

RESUMO

Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet ß-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and ß-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ∼20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in ß-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.


Assuntos
Insulina/metabolismo , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Glucose/metabolismo , Glucose/fisiologia , Haploinsuficiência , Homeostase , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Munc18/genética , Proteínas Munc18/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Qa-SNARE/genética , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Via Secretória , Vesículas Secretórias/ultraestrutura , Proteína 2 Associada à Membrana da Vesícula/metabolismo
13.
J Korean Acad Nurs ; 53(1): 69-86, 2023 Feb.
Artigo em Coreano | MEDLINE | ID: mdl-36898686

RESUMO

PURPOSE: This study aimed to evaluate the effects of digital health interventions on the psychotic symptoms among people with severe mental illness in the community. METHODS: A systematic review and meta-analysis were conducted in accordance with the Cochrane Intervention Research Systematic Review Manual and PRISMA. A literature search was conducted of published randomized controlled trials (RCTs) for digital health interventions from January 2022 to April 2022. RevMan software 5.3 was used for quality assessment and meta-analysis. RESULTS: A total 14 studies out of 9,864 studies were included in the review, and 13 were included in meta-analysis. The overall effect size of digital health interventions on psychotic symptoms was -0.21 (95% CI = -0.32 to -0.10). Sub-analysis showed that the reduction of the psychotic symptoms was effective in the schizophrenia spectrum group (SMD = -.0.22; 95% CI = -.0.36 to -0.09), web (SMD = -0.41; 95% CI = -0.82 to 0.01), virtual reality (SMD = -0.33; 95% CI = -0.56 to -0.10), mobile (SMD = -0.15; 95% CI = -0.28 to -0.03), intervention period of less than 3 months (SMD = -0.23; 95% CI = -0.35 to -0.11), and non-treatment group (SMD = -0.23; 95% CI = -0.36 to -0.11). CONCLUSION: These findings suggest that digital health interventions alleviate psychotic symptoms in patients with severe mental illnesses. However, well-designed digital health studies should be conducted in the future.


Assuntos
Transtornos Mentais , Humanos , Depressão
14.
J Biol Chem ; 286(48): 41359-41367, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21969371

RESUMO

The p21-activated kinase PAK1 is implicated in tumorigenesis, and efforts to inhibit PAK1 signaling as a means to induce tumor cell apoptosis are underway. However, PAK1 has also been implicated as a positive effector of mechanisms in clonal pancreatic beta cells and skeletal myotubes that would be crucial to maintaining glucose homeostasis in vivo. Of relevance, human islets of Type 2 diabetic donors contained ~80% less PAK1 protein compared with non-diabetics, implicating PAK1 in islet signaling/scaffolding functions. Mimicking this, islets from PAK1(-/-) knock-out mice exhibited profound defects in the second/sustained-phase of insulin secretion. Reiteration of this specific defect by human islets treated with the PAK1 signaling inhibitor IPA3 revealed PAK1 signaling to be of primary functional importance. Analyses of human and mouse islet beta cell signaling revealed PAK1 activation to be 1) dependent upon Cdc42 abundance, 2) crucial for signaling downstream to activate ERK1/2, but 3) dispensable for cofilin phosphorylation. Importantly, the PAK1(-/-) knock-out mice were found to exhibit whole body glucose intolerance in vivo. Exacerbating this, the PAK1(-/-) knock-out mice also exhibited peripheral insulin resistance. Insulin resistance was coupled to ablation of insulin-stimulated GLUT4 translocation in skeletal muscle from PAK1(-/-) knock-out mice, and in sharp contrast to islet beta cells, skeletal muscle PAK1 loss was underscored by defective cofilin phosphorylation but normal ERK1/2 activation. Taken together, these data provide the first human islet and mammalian in vivo data unveiling the key and crucial roles for differential PAK1 signaling in the multi-tissue regulation of whole body glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Glucose/metabolismo , Homeostase , Células Secretoras de Insulina/enzimologia , Quinases Ativadas por p21/metabolismo , Animais , Células CHO , Cofilina 1 , Cricetinae , Cricetulus , Diabetes Mellitus Tipo 2/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Secreção de Insulina , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/genética
15.
Diabetes ; 71(6): 1246-1260, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377441

RESUMO

Double C2 domain Β (DOC2b) protein is required for glucose-stimulated insulin secretion (GSIS) in ß-cells, the underlying mechanism of which remains unresolved. Our biochemical analysis using primary human islets and human and rodent clonal ß-cells revealed that DOC2b is tyrosine phosphorylated within 2 min of glucose stimulation, and Src family kinase member YES is required for this process. Biochemical and functional analysis using DOC2bY301 mutants revealed the requirement of Y301 phosphorylation for the interaction of DOC2b with YES kinase and increased content of VAMP2, a protein on insulin secretory granules, at the plasma membrane (PM), concomitant with DOC2b-mediated enhancement of GSIS in ß-cells. Coimmunoprecipitation studies demonstrated an increased association of DOC2b with ERM family proteins in ß-cells following glucose stimulation or pervanadate treatment. Y301 phosphorylation-competent DOC2b was required to increase ERM protein activation, and ERM protein knockdown impaired DOC2b-mediated boosting of GSIS, suggesting that tyrosine-phosphorylated DOC2b regulates GSIS via ERM-mediated granule localization to the PM. Taken together, these results demonstrate the glucose-induced posttranslational modification of DOC2b in ß-cells, pinpointing the kinase, site of action, and downstream signaling events and revealing a regulatory role of YES kinase at various steps in GSIS. This work will enhance the development of novel therapeutic strategies to restore glucose homeostasis in diabetes.


Assuntos
Proteínas de Ligação ao Cálcio , Células Secretoras de Insulina , Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo
16.
Nat Commun ; 13(1): 424, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058456

RESUMO

Mitochondrial dysfunction is implicated in skeletal muscle insulin resistance. Syntaxin 4 (STX4) levels are reduced in human diabetic skeletal muscle, and global transgenic enrichment of STX4 expression improves insulin sensitivity in mice. Here, we show that transgenic skeletal muscle-specific STX4 enrichment (skmSTX4tg) in mice reverses established insulin resistance and improves mitochondrial function in the context of diabetogenic stress. Specifically, skmSTX4tg reversed insulin resistance caused by high-fat diet (HFD) without altering body weight or food consumption. Electron microscopy of wild-type mouse muscle revealed STX4 localisation at or proximal to the mitochondrial membrane. STX4 enrichment prevented HFD-induced mitochondrial fragmentation and dysfunction through a mechanism involving STX4-Drp1 interaction and elevated AMPK-mediated phosphorylation at Drp1 S637, which favors fusion. Our findings challenge the dogma that STX4 acts solely at the plasma membrane, revealing that STX4 localises at/proximal to and regulates the function of mitochondria in muscle. These results establish skeletal muscle STX4 enrichment as a candidate therapeutic strategy to reverse peripheral insulin resistance.


Assuntos
Dinaminas/metabolismo , Exocitose , Resistência à Insulina , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Proteínas Qa-SNARE/metabolismo , Adenilato Quinase/metabolismo , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Doxiciclina/farmacologia , Feminino , Glucose/metabolismo , Homeostase , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Especificidade de Órgãos , Fosforilação , Fosfosserina/metabolismo , Condicionamento Físico Animal
17.
Front Endocrinol (Lausanne) ; 13: 821849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222279

RESUMO

Skeletal muscle accounts for ~80% of insulin-stimulated glucose uptake. The Group I p21-activated kinase 1 (PAK1) is required for the non-canonical insulin-stimulated GLUT4 vesicle translocation in skeletal muscle cells. We found that the abundances of PAK1 protein and its downstream effector in muscle, ARPC1B, are significantly reduced in the skeletal muscle of humans with type 2 diabetes, compared to the non-diabetic controls, making skeletal muscle PAK1 a candidate regulator of glucose homeostasis. Although whole-body PAK1 knockout mice exhibit glucose intolerance and are insulin resistant, the contribution of skeletal muscle PAK1 in particular was unknown. As such, we developed inducible skeletal muscle-specific PAK1 knockout (skmPAK1-iKO) and overexpression (skmPAK1-iOE) mouse models to evaluate the role of PAK1 in skeletal muscle insulin sensitivity and glucose homeostasis. Using intraperitoneal glucose tolerance and insulin tolerance testing, we found that skeletal muscle PAK1 is required for maintaining whole body glucose homeostasis. Moreover, PAK1 enrichment in GLUT4-myc-L6 myoblasts preserves normal insulin-stimulated GLUT4 translocation under insulin resistance conditions. Unexpectedly, skmPAK1-iKO also showed aberrant plasma insulin levels following a glucose challenge. By applying conditioned media from PAK1-enriched myotubes or myoblasts to ß-cells in culture, we established that a muscle-derived circulating factor(s) could enhance ß-cell function. Taken together, these data suggest that PAK1 levels in the skeletal muscle can regulate not only skeletal muscle insulin sensitivity, but can also engage in tissue crosstalk with pancreatic ß-cells, unveiling a new molecular mechanism by which PAK1 regulates whole-body glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases Ativadas por p21 , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Camundongos , Músculo Esquelético/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
18.
Am J Physiol Endocrinol Metab ; 301(6): E1072-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21828338

RESUMO

Second-phase insulin release requires the sustained mobilization of insulin granules from internal storage pools to the cell surface for fusion with the plasma membrane. However, the detailed mechanisms underlying this process remain largely unknown. GTP-loading of the small GTPase Cdc42 is the first glucose-specific activation step in the process, although how glucose triggers Cdc42 activation is entirely unknown. In a directed candidate screen for guanine nucleotide exchange factors (GEFs), which directly activate small GTPases, Cool-1/ßPix was identified in pancreatic islet beta cells. In support of its role as the beta cell Cdc42 GEF, ßPix coimmunoprecipitated with Cdc42 in human islets and MIN6 beta cells in a glucose-dependent manner, peaking just prior to Cdc42 activation. Furthermore, RNAi-mediated ßPix reduction by 50% corresponded to full ablation of glucose-induced Cdc42 activation and significant attenuation of basal and glucose-stimulated insulin secretion. Of the two Cdc42 guanine nucleotide dissociation inhibitor (GDI) proteins identified in beta cells, ßPix competed selectively with caveolin-1 (Cav-1) but not RhoGDI in coimmunoprecipitation and GST-Cdc42-GDP interaction assays. However, a phospho-deficient Cav-1-Y14F mutant failed to compete with ßPix; Cav-1(Tyr14) is an established phosphorylation site for Src kinase. Taken together, these data support a new model, wherein glucose stimulates Cav-1 and induces its dissociation from Cdc42, possibly via Src kinase activation to phosphorylate Cav-1(Tyr14), to promote Cdc42-ßPix binding and Cdc42 activation, and to trigger downstream signaling and ultimately sustain insulin release.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Insulina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Caveolina 1/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho , Estudos de Validação como Assunto , Proteína cdc42 de Ligação ao GTP/genética
19.
Restor Dent Endod ; 46(4): e54, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34909418

RESUMO

OBJECTIVES: The purpose of this study was to quantify phase transformation after hydrofluoric acid (HF) etching at various concentrations on the surface of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), and to evaluate changes in bonding strength before and after thermal cycling. MATERIALS AND METHODS: A group whose Y-TZP surface was treated with tribochemical silica abrasion (TS) was used as the control. Y-TZP specimens from each experimental group were etched with 5%, 10%, 20%, and 40% HF solutions at room temperature for 10 minutes. First, to quantify the phase transformation, Y-TZP specimens (n = 5) treated with TS, 5%, 10%, 20% and 40% HF solutions were subjected to X-ray diffraction. Second, to evaluate the change in bond strength before and after thermal cycling, zirconia primer and MDP-containing resin cement were sequentially applied to the Y-TZP specimen. After 5,000 thermal cycles for half of the Y-TZP specimens, shear bond strength was measured for all experimental groups (n = 10). RESULTS: The monoclinic phase content in the 40% HF-treated group was higher than that of the 5%, 10%, and 20% HF-treated groups, but lower than that of TS-treated group (p < 0.05). The 40% HF-treated group showed significantly higher bonding strength than the TS, 5%, and 10% HF-treated groups, even after thermal cycling (p < 0.05). CONCLUSIONS: Through this experiment, the group treated with SiO2 containing air-borne abrasion on the Y-TZP surface showed higher phase transformation and higher reduction in bonding strength after thermal cycling compared to the group treated with high concentration HF.

20.
Diabetes ; 70(4): 889-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33526588

RESUMO

Enrichment of human islets with syntaxin 4 (STX4) improves functional ß-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-ßH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1ß, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBß but not IκBα. Inhibition of IKKß prevented IκBß degradation, suggesting that IKKß phosphorylates IκBß. Moreover, the IKKß inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKß in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBß from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBß and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in ß-cells via associating with and preventing IκBß degradation, suppressing chemokine expression, and protecting islet ß-cells from cytokine-mediated dysfunction and demise.


Assuntos
Proteínas Qa-SNARE/metabolismo , Western Blotting , Quimiocinas/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Imunoprecipitação , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA