Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 146(3): 289-303, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29313985

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. Cover Image for this issue: doi: 10.1111/jnc.14187.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoprecipitação , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D3/metabolismo , Transfecção
2.
Korean J Physiol Pharmacol ; 21(1): 27-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066138

RESUMO

Angelicae Gigantis Radix (AGR, Angelica gigas) has been used for a long time as a traditional folk medicine in Korea and oriental countries. Decursinol angelate (DCA) is structurally isomeric decursin, one of the major components of AGR. This study was performed to confirm whether DCA augments pentobarbital-induced sleeping behaviors via the activation of GABAA-ergic systems in animals. Oral administration of DCA (10, 25 and 50 mg/kg) markedly suppressed spontaneous locomotor activity. DCA also prolonged sleeping time, and decreased the sleep latency by pentobarbital (42 mg/kg), in a dose-dependent manner, similar to muscimol, both at the hypnotic (42 mg/kg) and sub-hypnotic (28 mg/kg) dosages. Especially, DCA increased the number of sleeping animals in the sub-hypnotic dosage. DCA (50 mg/kg, p.o.) itself modulated sleep architectures; DCA reduced the counts of sleep/wake cycles. At the same time, DCA increased total sleep time, but not non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. In the molecular experiments. DCA (0.001, 0.01 and 0.1 µg/ml) increased intracellular Cl- influx level in hypothalamic primary cultured neuronal cells of rats. In addition, DCA increased the protein expression of glutamic acid decarboxylase (GAD65/67) and GABAA receptors subtypes. Taken together, these results suggest that DCA potentiates pentobarbital-induced sleeping behaviors through the activation of GABAA-ergic systems, and can be useful in the treatment of insomnia.

3.
Brain Behav Immun ; 53: 113-122, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26593275

RESUMO

Nearly 7-10 million people are living with Alzheimer's disease (AD) worldwide. Senile plaques composed of ß-amyloid (Aß) are a pathological hallmark of Alzheimer's disease. Presenilin 2 (PS2) mutations increase Aß generation in the brains of AD patients. The Aß is generated through the sequential cleavage of amyloid precursor protein by ß- and γ-secretases. Additionally, increasing evidences suggest that estrogen can reduce the development of AD via regulation of ß-secretases activity and beta-site APP-cleaving enzyme (BACE1) expression. But the underlying correlation mechanism of Aß generation by PS2 mutations and estrogen remains to be clarified. To investigate the anti-amyloidogenesis effect of estrogen in a PS2 mutative condition, we examined memory impairment in ovariectomized PS2 mutation (N141I) mice in which cognitive function was assessed by the Morris water maze test and passive avoidance test. In addition, Western blot analysis, immunostaining, immunofluorescence staining, ELISA and enzyme activity assays were used to examine the degree of Aß deposition in the brains. In the present study, Aß accumulated more in the ovariectomized PS2 mutant mice brain, and greatly worsened memory impairment and glial activation as well as neurogenic inflammation. In parallel with increased memory impairment, activity of ß-secretase and expression of the BACE1 increased inovariectomized PS2 mutant mice. Much higher activity of NF-κB was observed by EMSA in ovariectomized PS2 mutant mice. In addition, the Aß level was decreased by treatment of ß-estradiol through inhibiting BACE1 expression in PS2 transfacted PC12 cells. These results suggest that mutation of PS2 can lead to NF-κB mediate amyloidogensis, and this effect can be amplified by the absence of estrogen.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/biossíntese , Estrogênios/deficiência , Transtornos da Memória/metabolismo , NF-kappa B/metabolismo , Presenilina-2/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Estrogênios/metabolismo , Feminino , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Placa Amiloide/metabolismo , Presenilina-2/genética , Transdução de Sinais
4.
Horm Behav ; 80: 19-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836768

RESUMO

Approximately, 7-10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP+)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Receptor alfa de Estrogênio/genética , Estrogênios/fisiologia , Degeneração Neural/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
5.
J Neuroinflammation ; 12: 124, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112466

RESUMO

BACKGROUND: Accumulation of beta-amyloid and neuroinflammation trigger Alzheimer's disease. We previously found that lipopolysaccharide (LPS) caused neuroinflammation with concomitant accumulation of beta-amyloid peptides leading to memory loss. A variety of anti-inflammatory compounds inhibiting nuclear factor kappaB (NF-κB) activation have showed efficacy to hinder neuroinflammation and amyloidogenesis. We also found that bee venom (BV) inhibits NF-κB. METHODS: A mouse model of LPS-induced memory loss used administration of BV (0.8 and 1.6 µg/kg/day, i.p.) to ICR mice for 7 days before injection of LPS (2.5 mg/kg/day, i.p.). Memory loss was assessed using a Morris water maze test and passive avoidance test. For in vitro study, we treated BV (0.5, 1, and 2 µg/mL) to astrocytes and microglial BV-2 cells with LPS (1 µg/mL). RESULTS: We found that BV inhibited LPS-induced memory loss determined by behavioral tests as well as cell death. BV also inhibited LPS-induced increases in the level of beta-amyloid (Aß), ß-and γ-secretases activities, NF-κB and its DNA-binding activity and expression of APP, and BACE1 and neuroinflammation proteins (COX-2, iNOS, GFAP and IBA-1) in the brain and cultured cells. In addition, pull-down assay and molecular modeling showed that BV binds to NF-κB. CONCLUSIONS: BV attenuates LPS-induced amyloidogenesis, neuroinflammation, and therefore memory loss via inhibiting NF-κB signaling pathway. Thus, BV could be useful for treatment of Alzheimer's disease.


Assuntos
Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Lipopolissacarídeos/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Ciclo-Oxigenase 2/metabolismo , Proteína Glial Fibrilar Ácida , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais , NF-kappa B/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/fisiologia
6.
Korean J Physiol Pharmacol ; 19(2): 89-97, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729269

RESUMO

The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the 3(rd) day. CART peptides were over-expressed on the 5(th) day in the striata of behaviorally sensitized mice. A higher proportion of CART(+) cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both D1R and D2R antagonists, SCH 23390 (D1R selective) and raclopride (D2R selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both D1R and D2R knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the D1R-KO mice, but not in the D2R-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by D1R.

7.
Behav Pharmacol ; 25(1): 32-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24366314

RESUMO

This study examined whether repeated administration of caffeine would induce behavioural sensitization and overexpression of cocaine-regulated and amphetamine-regulated transcript (CART) peptides in mice. The involvement of dopaminergic receptors and adenosine receptors in caffeine-induced behavioural sensitization and CART overexpression was studied. The relevance of D1R and D2R, and A1R and A(2A)R in the overexpression of CART peptides in mouse striatum was also evaluated. Repeated administration of caffeine induced behavioural sensitization in mice. Significant increases in CART mRNA levels were observed on day 3 and peaked at day 5 of caffeine administration, and then decreased gradually. Higher proportions of CART⁺ cells were observed in the dorsolateral and ventrolateral part of the caudate putamen than in the nucleus accumbens shell and core. The behavioural sensitization induced by caffeine was inhibited by dopaminergic receptor antagonists and adenosine receptor agonists. D1R and D2R, and cyclic AMP (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signalling were activated by caffeine, but A1R and A(2A)R were inhibited. Overexpression of caffeine-induced CART peptides and pCREB activity were blocked by N-cyclopentyladenosine (CPA, an A1R agonist) and 4-[2-[[6-amino-9-(N-ethyl-ß-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680, an A(2A)R agonist), but not by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390, a D1R antagonist) or raclopride (a D2R antagonist). Caffeine-induced overexpression of CART peptides was associated with the inhibition of A1R and A(2A)R, and the activation of cAMP/PKA/pCREB signalling. Moreover, the A(2A)R-D2R heterodimer might be involved in the overexpression of CART peptides induced by caffeine.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Animais , Benzazepinas/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Receptores de Dopamina D2/deficiência , Fatores de Tempo
8.
Birth Defects Res B Dev Reprod Toxicol ; 98(3): 268-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23696164

RESUMO

BACKGROUND: Maternal alcohol ingestion on pregnant period causes fetal alcohol syndrome including psychological and behavioral problems, and developmental abnormality. In this study, we investigated the effect of emodin, an active anthraquinone component found in the roots and bark of the genus Rhamnus (Buckthorn), on ethanol-induced teratogenesis during embryonic organogenesis. METHODS: We cultured mouse embryos on embryonic day 8.5 for 2 days with ethanol (5 µl/3 ml) and/or emodin (1×10(-5) and 1×10(-4) µg/ml) using a whole embryo culture system and then investigated the developmental evaluation, superoxide dismutase (SOD) activity, and expression patterns of cytoplasmic SOD (SOD1), mitochondrial SOD (SOD2), cytosolic glutathione peroxidase (cGPx), tumor necrosis factor-α (TNF-α), caspase 3, and hypoxia inducible factor 1α (HIF-1α). RESULTS: Morphological parameters, including growth in yolk sac and fetal head, body length, and development of the central nervous system, circulation system, sensory organs, skeletal system, and limbs in embryos exposed to ethanol were significantly decreased compared to those of the normal control group, but co-treatment with emodin (1 × 10(-5) and 1 × 10(-4) µg/ml) significantly improved these parameters. Furthermore, the reduced levels of SOD activity, and SOD1, SOD2, cGPx, and HIF-1α and the increased gene levels of TNF-α and caspase-3 due to ethanol exposure were significantly restored by cotreatment with emodin. Birth Defects Res (Part B) 98:268-275, 2013. © 2013 Wiley Periodicals, Inc. CONCLUSIONS: This study revealed that cotreatment with emodin significantly prevented teratogenesis induced by ethanol, not only by modulating hypoxia and antioxidant enzymes, but also by attenuating the enhanced levels of TNF-α and caspase 3 in cultured embryos. Therefore, emodin may be an effective preventive agent for ethanol-induced teratogenesis.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/efeitos dos fármacos , Emodina/farmacologia , Etanol/toxicidade , Feto/anormalidades , Feto/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Feminino , Feto/enzimologia , Feto/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Teratogênicos/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/embriologia
9.
Phytother Res ; 27(3): 438-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22628265

RESUMO

Magnolia bark contains several compounds such as magnolol, honokiol, 4-O-methylhonokiol, obovatol, and other neolignan compounds. These compounds have been reported to have various beneficial effects in various diseases. There is sufficient possibility that ethanol extract of Magnolia officinalis is more effective in amyloidogenesis via synergism of these ingredients. Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). We investigated whether the ethanol extract of M. officinalis (10 mg/ kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis in AD mouse model by intraperitoneal lipopolysaccharide (LPS, 250 µg/ kg/day for seven times) injection. We found that ethanol extract of M. officinalis prevented LPS-induced memory deficiency as well as inhibited the LPS-induced elevation of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase 2, and activation of astrocytes and microglia. In particular, administration of M. officinalis ethanol extract inhibited LPS-induced amyloidogenesis, which resulted in the inhibition of amyloid precursor protein, beta-site amyloid-precursor-protein-cleaving enzyme 1 and C99. Thus, this study shows that ethanol extract of M. officinalis prevents LPS-induced memory impairment as well as amyloidogenesis via inhibition of neuroinflammation and suggests that ethanol extract of M. officinalis might be a useful intervention for neuroinflammation-associated diseases such as AD.


Assuntos
Amiloidose/tratamento farmacológico , Inflamação/tratamento farmacológico , Magnolia/química , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Casca de Planta/química
10.
J Neurochem ; 120(6): 1048-59, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212065

RESUMO

Etiology of Alzheimer's disease (AD) is obscure, but neuroinflammation and accumulation of ß-amyloid (Aß) are implicated in pathogenesis of AD. We have shown anti-inflammatory and neurotrophic properties of obovatol, a biphenolic compound isolated from Magnolia obovata. In this study, we examined the effect of obovatol on cognitive deficits in two separate AD models: (i) mice that received intracerebroventricular (i.c.v.) infusion of Aß(1-42) (2.0 µg/mouse) and (ii) Tg2576 mice-expressing mutant human amyloid precursor protein (K670N, M671L). Injection of Aß(1-42) into lateral ventricle caused memory impairments in the Morris water maze and passive avoidance tasks, being associated with neuroinflammation. Aß(1-42) -induced abnormality was significantly attenuated by administration of obovatol. When we analyzed with Tg2576 mice, long-term treatment of obovatol (1 mg/kg/day for 3 months) significantly improved cognitive function. In parallel with the improvement, treatment suppressed astroglial activation, BACE1 expression and NF-κB activity in the transgenic mice. Furthermore, obovatol potently inhibited fibrillation of Aßin vitro in a dose-dependent manner, as determined by Thioflavin T fluorescence and electron microscopic analysis. In conclusion, our data demonstrated that obovatol prevented memory impairments in experimental AD models, which could be attributable to amelioration of neuroinflammation and amyloidogenesis by inhibition of NF-κB signaling pathway and anti-fibrillogenic activity of obovatol.


Assuntos
Doença de Alzheimer/complicações , Compostos de Bifenilo/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Éteres Fenílicos/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Compostos de Bifenilo/química , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/toxicidade , Éteres Fenílicos/química
11.
J Neuroinflammation ; 9: 35, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22339795

RESUMO

BACKGROUND: Neuroinflammation is important in the pathogenesis and progression of Alzheimer disease (AD). Previously, we demonstrated that lipopolysaccharide (LPS)-induced neuroinflammation caused memory impairments. In the present study, we investigated the possible preventive effects of 4-O-methylhonokiol, a constituent of Magnolia officinalis, on memory deficiency caused by LPS, along with the underlying mechanisms. METHODS: We investigated whether 4-O-methylhonokiol (0.5 and 1 mg/kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis on AD model mice by intraperitoneal LPS (250 µg/kg daily 7 times) injection. In addition, LPS-treated cultured astrocytes and microglial BV-2 cells were investigated for anti-neuroinflammatory and anti-amyloidogenic effect of 4-O-methylhonkiol (0.5, 1 and 2 µM). RESULTS: Oral administration of 4-O-methylhonokiol ameliorated LPS-induced memory impairment in a dose-dependent manner. In addition, 4-O-methylhonokiol prevented the LPS-induced expression of inflammatory proteins; inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as activation of astrocytes (expression of glial fibrillary acidic protein; GFAP) in the brain. In in vitro study, we also found that 4-O-methylhonokiol suppressed the expression of iNOS and COX-2 as well as the production of reactive oxygen species, nitric oxide, prostaglandin E2, tumor necrosis factor-α, and interleukin-1ß in the LPS-stimulated cultured astrocytes. 4-O-methylhonokiol also inhibited transcriptional and DNA binding activity of NF-κB via inhibition of IκB degradation as well as p50 and p65 translocation into nucleus of the brain and cultured astrocytes. Consistent with the inhibitory effect on neuroinflammation, 4-O-methylhonokiol inhibited LPS-induced Aß1-42 generation, ß- and γ-secretase activities, and expression of amyloid precursor protein (APP), BACE1 and C99 as well as activation of astrocytes and neuronal cell death in the brain, in cultured astrocytes and in microglial BV-2 cells. CONCLUSION: These results suggest that 4-O-methylhonokiol inhibits LPS-induced amyloidogenesis via anti-inflammatory mechanisms. Thus, 4-O-methylhonokiol can be a useful agent against neuroinflammation-associated development or the progression of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Inflamação/tratamento farmacológico , Lignanas/uso terapêutico , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas , Inflamação/induzido quimicamente , Lignanas/farmacologia , Lipopolissacarídeos/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/metabolismo
12.
Biol Pharm Bull ; 35(9): 1440-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22975493

RESUMO

Apigenin (5,7,4'-trihydroxyflavone) is a principal ingredient of Cirsium japonicum. These experiments were performed to determine whether apigenin has neuroprotective effects against kainic acid (KA)-induced excitotoxicity in vitro and in vivo. Intraperitoneal (i.p.) administration of apigenin (25, 50 mg/kg) decreased the seizure scores induced by KA injection (40 mg/kg, i.p.) in mice. In addition, the convulsion onset time was significantly delayed by apigenin administration. Moreover, we found that apigenin blocked KA-induced seizure-form electroencephalogram (EEG) discharge activity in the brain cortex. In hippocampal cells, apigenin inhibited KA-induced excitotoxicity in a dose-dependent manner as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To study the possible mechanisms underlying the in vitro neuroprotective effects of apigenin against KA-induced cytotoxicity, we also examined the effect of apigenin on intracellular reactive oxygen species (ROS) elevations in cultured hippocampal neurons and found that apigenin treatment dose-dependently inhibited intracellular ROS elevation. The remarkable reduction of glutathione (GSH) levels induced by KA in hippocampal tissues was reversed by apigenin in a dose-dependent manner. In addition, similar results were obtained after pretreatment with free radical scavengers such as trolox and dimethylthiourea (DMTU). Finally, after confirming the protective effect of apigenin in hippocampal CA3 region, we found apigenin is an active compound in KA-induced neuroprotection. These results collectively indicate that apigenin alleviates KA-induced excitotoxicity by quenching ROS as well as inhibiting GSH depletion in hippocampal neurons.


Assuntos
Antioxidantes/uso terapêutico , Apigenina/uso terapêutico , Carduus/química , Hipocampo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Convulsões/prevenção & controle , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apigenina/farmacologia , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/efeitos adversos , Glutationa/metabolismo , Hipocampo/metabolismo , Ácido Caínico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-23133495

RESUMO

This study investigated the neuroprotective activity of red ginseng extract (RGE, Panax ginseng, C. A. Meyer) against kainic acid- (KA-) induced excitotoxicity in vitro and in vivo. In hippocampal cells, RGE inhibited KA-induced excitotoxicity in a dose-dependent manner as measured by the MTT assay. To study the possible mechanisms of the RGE-mediated neuroprotective effect against KA-induced cytotoxicity, we examined the levels of intracellular reactive oxygen species (ROS) and [Ca(2+)](i) in cultured hippocampal neurons and found that RGE treatment dose-dependently inhibited intracellular ROS and [Ca(2+)](i) elevation. Oral administration of RGE (30 and 200 mg/kg) in mice decreased the malondialdehyde (MDA) level induced by KA injection (30 mg/kg, i.p.). In addition, similar results were obtained after pretreatment with the radical scavengers Trolox and N, N'-dimethylthiourea (DMTU). Finally, after confirming the protective effect of RGE on hippocampal brain-derived neurotropic factor (BDNF) protein levels, we found that RGE is active compounds mixture in KA-induced hippocampal mossy-fiber function improvement. Furthermore, RGE eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, and the IC(50) was approximately 10 mg/ml. The reductive activity of RGE, as measured by reaction with hydroxyl radical ((•)OH), was similar to trolox. The second-order rate constant of RGE for (•)OH was 3.5-4.5 × 10(9) M(-1)·S(-1). Therefore, these results indicate that RGE possesses radical reduction activity and alleviates KA-induced excitotoxicity by quenching ROS in hippocampal neurons.

14.
Prostate ; 71(8): 801-12, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21456063

RESUMO

BACKGROUND: Bee venom has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of bee venom on the prostate cancer and their action mechanisms have not been reported yet. METHODS: To determine the effect of bee venom and its major component, melittin on the prostate cancer cells, apoptosis is analyzed by tunnel assay and apoptotic gene expression. For xenograft studies, bee venom was administrated intraperitoneally twice per week for 4 weeks, and the tumor growth was measured and the tumor were analyzed by immunohistochemistry. To investigate whether bee venom and melittin can inactivate nuclear factor kappa B (NF-κB), we assessed NF-κB activity in vitro and in vivo. RESULTS AND CONCLUSIONS: Bee venom (1-10 µg/ml) and melittin (0.5-2.5 µg/ml) inhibited cancer cell growth through induction of apoptotic cell death in LNCaP, DU145, and PC-3 human prostate cancer cells. These effects were mediated by the suppression of constitutively activated NF-κB. Bee venom and melittin decreased anti-apoptotic proteins but induced pro-apoptotic proteins. However, pan caspase inhibitor abolished bee venom and melittin-induced apoptotic cell death and NF-κB inactivation. Bee venom (3-6 mg/kg) administration to nude mice implanted with PC-3 cells resulted in inhibition of tumor growth and activity of NF-κB accompanied with apoptotic cell death. Therefore, these results indicated that bee venom and melittin could inhibit prostate cancer in in vitro and in vivo, and these effects may be related to NF-κB/caspase signal mediated induction of apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Venenos de Abelha/farmacologia , Caspases/metabolismo , NF-kappa B/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Masculino , Meliteno/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/enzimologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Neuroinflammation ; 8: 132, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21982455

RESUMO

BACKGROUND: Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(p-hydroxyphenyl)-2-butenal in lipopolysaccharide (LPS)-stimulated astrocytes and microglial BV-2 cells. METHODS: Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 µg/ml) for 24 h, in the presence (1, 2, 5 µM) or absence of 2,4-bis(p-hydroxyphenyl)-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aß, and secretases activity. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined using gel mobility shift assays. RESULTS: We found that 2,4-bis(p-hydroxyphenyl)-2-butenal (1, 2, 5 µM) suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in LPS (1 µg/ml)-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(p-hydroxyphenyl)-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(p-hydroxyphenyl)-2-butenal inhibited LPS-elevated Aß42 levels through attenuation of ß- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3) siRNA and a pharmacological inhibitor showed that 2,4-bis(p-hydroxyphenyl)-2-butenal inhibits LPS-induced activation of STAT3. CONCLUSIONS: These results indicate that 2,4-bis(p-hydroxyphenyl)-2-butenal inhibits neuroinflammatory reactions and amyloidogenesis through inhibition of NF-κB and STAT3 activation, and suggest that 2,4-bis(p-hydroxyphenyl)-2-butenal may be useful for the treatment of neuroinflammatory diseases like Alzheimer's disease.


Assuntos
Aldeídos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/efeitos dos fármacos , Frutose/metabolismo , Microglia/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Aldeídos/química , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Reação de Maillard , Camundongos , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
J Cardiovasc Pharmacol ; 58(4): 446-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21975870

RESUMO

In a previous experiment, (-)-epigallocatechin-3-O-gallate (EGCG) reduced caffeine-induced locomotor activity and stereotyped behaviors and inhibited caffeine-induced neuronal stimulant activity. This research was performed to give additional evidence that EGCG counteracts caffeine-induced stimulant effects in animals. EGCG inhibited caffeine-induced cardiovascular activation measures, such as arterial pressure and heart rate. In addition, the increases in the levels of adrenaline and noradrenaline in the blood induced by caffeine was reduced by EGCG. We suggest that EGCG may reduce caffeine-induced increases in blood pressure and heart rate and may decrease the levels of catecholamines in the blood. Therefore, EGCG counteracts caffeine-induced cardiovascular activity. The stimulant effects of caffeine should be reduced by the amount of EGCG in green tea.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Cafeína/farmacologia , Catequina/análogos & derivados , Frequência Cardíaca/efeitos dos fármacos , Animais , Catequina/farmacologia , Epinefrina/sangue , Masculino , Norepinefrina/sangue , Ratos , Ratos Wistar
17.
Artigo em Inglês | MEDLINE | ID: mdl-21331373

RESUMO

Dried Chrysanthemum morifolium flowers have traditionally been used in Korea for the treatment of insomnia. This study was performed to investigate whether the ethanol extract of Chrysanthemum morifolium flowers (EFC) enhances pentobarbital-induced sleep behaviors. EFC prolonged sleep time induced by pentobarbital similar to muscimol, a GABA(A) receptors agonist. EFC also increased sleep rate and sleep time when administrated with pentobarbital at a subhypnotic dosage. Both EFC and pentobarbital increased chloride (Cl(-)) influx in primary cultured cerebellar granule cells. EFC increased glutamic acid decarboxylase (GAD) expression levels, but had no effect on the expression of α1-, ß2-, and γ2-subunits of the GABA(A) receptor in the hippocampus of a mouse brain. This is in contrast to treatment with pentobarbital, which showed decreased α1-subunit expression and no change in GAD expression. In conclusion, EFC augments pentobarbital-induced sleep behaviors; these effects may result from Cl(-) channel activation.

18.
Behav Pharmacol ; 21(5-6): 572-5, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20700049

RESUMO

This experiment was designed to know whether (-)-epigallocatethin-3-O-gallate (EGCG) counteracts caffeine-induced hyperactivity, and its potential mechanisms in mice. EGCG inhibited methamphetamine-induced, cocaine-induced and caffeine-induced horizontal hyperlocomotion and rearing activity. EGCG also inhibited hyperlocomotion and rearing activity induced by apomorphine, a D1/D2-like agonist. Moreover, EGCG inhibited climbing behavior, a typical stereotyped behavior induced by stimulation of dopamine receptors through the activation of those receptors by apomorphine. From this experiment, we suggest that EGCG inhibits hyperactivity induced by psychostimulants including caffeine, in part by modulating dopaminergic transmission, and these inhibitory effects of EGCG counteract the stimulant actions of caffeine in green tea.


Assuntos
Cafeína/toxicidade , Catequina/análogos & derivados , Estimulantes do Sistema Nervoso Central/toxicidade , Hipercinese/prevenção & controle , Animais , Catequina/farmacologia , Hipercinese/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Comportamento Estereotipado/efeitos dos fármacos , Chá/química
19.
J Toxicol Environ Health A ; 73(21-22): 1544-59, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20954080

RESUMO

The purpose of this study was to determine the effects of di(n-butyl) phthalate (DBP) administration on male reproductive organ development in F1 Sprague-Dawley rats following in utero exposure. During gestation days (GD) 10-19, pregnant rats were administered daily, orally, DBP at 250, 500, or 700 mg/kg or flutamide (1, 12.5, or 25 mg/kg/d) as a positive control. The male offspring were sacrificed at 31 d of age. DBP and flutamide dose-dependently significantly increased the incidence of hypospadias and cryptorchidism in F1 male offspring. The weights of testes and accessory sex organs (epididymides, seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles (LABC), and Cowper's glands) were significantly reduced in DBP-treated animals. Furthermore, cauda agenesis of epididymides and ventral prostate atrophy were observed in high-dose 700-mg/kg DBP males. Anogenital distance (AGD) and levels of dihydrotestosterone (DHT) and testosterone were significantly decreased in the DBP (700 mg/kg/d)-treated groups. In particular, the expression of androgen receptor (AR) and 5α-reductase type 2 in the proximal penis was markedly depressed following administration of DBP (700 mg/kg/d) or flutamide (25 mg/kg/d). The expression of sonic hedgehog (Shh) in the urethral epithelium of the proximal penis was significantly less in the DBP (700 mg/kg/d)- or flutamide (25 mg/kg/d)-treated groups. In addition, DBP dose-dependently significantly increased the expression of estrogen receptor (ER α) in the undescended testis. Data demonstrated that in utero exposure to DBP produced several abnormal responses in male reproductive organs, and these effects may be due to disruption of the stage-specific expression of genes related to androgen-dependent organs development.


Assuntos
Dibutilftalato/toxicidade , Embrião de Mamíferos/efeitos dos fármacos , Genitália Masculina/efeitos dos fármacos , Plastificantes/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Canal Anal/anormalidades , Canal Anal/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Criptorquidismo/induzido quimicamente , Criptorquidismo/patologia , Feminino , Flutamida/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genitália Masculina/metabolismo , Genitália Masculina/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipospadia/induzido quimicamente , Hipospadia/patologia , Masculino , Exposição Materna , Mamilos/anormalidades , Mamilos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
20.
J Neurosci Res ; 87(2): 522-31, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18803281

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive impairment. The effect of presenilin 1 (PS1) and PS2 mutation on cognition has been well characterized in a variety of transgenic mice. However, noncognitive behaviors have not been considered in these mice. In the present study, we found that transgenic mice expressing mutant PS2 (N141I) displayed decreased anxiety behavior determined by the elevated plus maze test and the light dark box test. However, these mice showed biphasic ambulatory activity (hyperactivity followed by hypoactivity) in an open field test. Correlated well with the reduced anxiety, expression of GABA(A)alpha(1) receptor was higher whereas c-Fos was lower in the cortex, hippocampus, and amygdala of the mice expressing PS2 mutation than those of the wild-type PS2 or nontransgenic control mice. These data indicate that PS2 mutation causes reduction of anxiety, and this effect may be related to the change of the expression of GABA(A)alpha(1) receptor and c-Fos. These findings could be useful in the understanding and the treatment of AD patients.


Assuntos
Ansiedade/genética , Encéfalo/metabolismo , Presenilina-2/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Ansiedade/metabolismo , Western Blotting , Hipercinese/genética , Hipercinese/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de GABA-A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA