Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(5): 051802, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39159122

RESUMO

The axion has emerged as the most attractive solution to two fundamental questions in modern physics related to the charge-parity invariance in strong interactions and the invisible matter component of our Universe. Over the past decade, there have been many theoretical efforts to constrain the axion mass based on various cosmological assumptions. Interestingly, different approaches from independent groups produce good overlap between 20 and 30 µeV. We performed an experimental search to probe the presence of dark matter axions within this particular mass region. The experiment utilized a multicell cavity haloscope embedded in a 12 T magnetic field to seek for microwave signals induced by the axion-photon coupling. The results ruled out the KSVZ axions as dark matter over a mass range between 21.86 and 22.00 µeV at a 90% confidence level. This represents a sensitive experimental search guided by specific theoretical predictions.

2.
Phys Rev Lett ; 130(9): 091602, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930919

RESUMO

We report the results of an axion dark matter search over an axion mass range of 9.39-9.51 µeV. A flux-driven Josephson parametric amplifier (JPA) was added to the cryogenic receiver chain. A system noise temperature of as low as 200 mK was achieved, which is the lowest recorded noise among published axion cavity experiments with phase-insensitive JPA operation. In addition, we developed a two-stage scanning method which boosted the scan speed by 26%. As a result, a range of two-photon coupling in a plausible model for the QCD axion was excluded with an order of magnitude higher in sensitivity than existing limits.

3.
Phys Rev Lett ; 130(7): 071002, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867826

RESUMO

We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded the axion-photon coupling g_{aγγ} down to about 6.2×10^{-16} GeV^{-1} over the axion mass range between 4.51 and 4.59 µeV at a 90% confidence level. The achieved experimental sensitivity can also exclude Kim-Shifman-Vainshtein-Zakharov axion dark matter that makes up just 13% of the local dark matter density. The CAPP-12TB haloscope will continue the search over a wide range of axion masses.

4.
Phys Rev Lett ; 126(19): 191802, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047607

RESUMO

The Center for Axion and Precision Physics Research at the Institute for Basic Science is searching for axion dark matter using ultralow temperature microwave resonators. We report the exclusion of the axion mass range 10.7126-10.7186 µeV with near Kim-Shifman-Vainshtein-Zakharov (KSVZ) coupling sensitivity and the range 10.16-11.37 µeV with about 9 times larger coupling at 90% confidence level. This is the first axion search result in these ranges. It is also the first with a resonator physical temperature of less than 40 mK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA