Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 66(6): 2178-2185, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26957484

RESUMO

Biocathode communities are of interest for a variety of applications, including electrosynthesis, bioremediation, and biosensors, yet much remains to be understood about the biological processes that occur to enable these communities to grow. One major difficulty in understanding these communities is that the critical autotrophic organisms are difficult to cultivate. An uncultivated, electroautotrophic bacterium previously identified as an uncultivated member of the family Chromatiaceae appears to be a key organism in an autotrophic biocathode microbial community. Metagenomic, metaproteomic and metatranscriptomic characterization of this community indicates that there is likely a single organism that utilizes electrons from the cathode to fix CO2, yet this organism has not been obtained in pure culture. Fluorescence in situ hybridization reveals that the organism grows as rod-shaped cells approximately 1.8 × 0.6 µm, and forms large clumps on the cathode. The genomic DNA G+C content was 59.2 mol%. Here we identify the key features of this organism and propose 'Candidatus Tenderia electrophaga', within the Gammaproteobacteria on the basis of low nucleotide and predicted protein sequence identity to known members of the orders Chromatiales and Thiotrichales.


Assuntos
Biofilmes , Chromatiaceae/classificação , Eletrodos/microbiologia , Filogenia , Processos Autotróficos , Técnicas de Tipagem Bacteriana , Composição de Bases , Dióxido de Carbono/metabolismo , Chromatiaceae/genética , Chromatiaceae/isolamento & purificação , DNA Bacteriano/genética , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Nature ; 464(7290): 937-41, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20348905

RESUMO

Repair of DNA double-strand breaks (DSBs) by homologous recombination is crucial for cell proliferation and tumour suppression. However, despite its importance, the molecular intermediates of mitotic DSB repair remain undefined. The double Holliday junction (DHJ), presupposed to be the central intermediate for more than 25 years, has only been identified during meiotic recombination. Moreover, evidence has accumulated for alternative, DHJ-independent mechanisms, raising the possibility that DHJs are not formed during DSB repair in mitotically cycling cells. Here we identify intermediates of DSB repair by using a budding-yeast assay system designed to mimic physiological DSB repair. This system uses diploid cells and provides the possibility for allelic recombination either between sister chromatids or between homologues, as well as direct comparison with meiotic recombination at the same locus. In mitotically cycling cells, we detect inter-homologue joint molecule (JM) intermediates whose strand composition and size are identical to those of the canonical DHJ structures observed in meiosis. However, in contrast to meiosis, JMs between sister chromatids form in preference to those between homologues. Moreover, JMs seem to represent a minor pathway of DSB repair in mitotic cells, being detected at about tenfold lower levels (per DSB) than during meiotic recombination. Thus, although DHJs are identified as intermediates of DSB-promoted recombination in both mitotic and meiotic cells, their formation is distinctly regulated according to the specific dictates of the two cellular programs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Cruciforme/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Cromátides/genética , Cromátides/metabolismo , Troca Genética/genética , DNA Cruciforme/genética , Diploide , Meiose/genética , Mitose/genética , Modelos Genéticos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã/genética , Fatores de Tempo
3.
Mol Cell ; 29(4): 517-24, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18313389

RESUMO

During DNA double-strand-break (DSB) repair by recombination, the broken chromosome uses a homologous chromosome as a repair template. Early steps of recombination are well characterized: DSB ends assemble filaments of RecA-family proteins that catalyze homologous pairing and strand-invasion reactions. By contrast, the postinvasion steps of recombination are poorly characterized. Rad52 plays an essential role during early steps of recombination by mediating assembly of a RecA homolog, Rad51, into nucleoprotein filaments. The meiosis-specific RecA-homolog Dmc1 does not show this dependence, however. By exploiting the Rad52 independence of Dmc1, we reveal that Rad52 promotes postinvasion steps of both crossover and noncrossover pathways of meiotic recombination in Saccharomyces cerevisiae. This activity resides in the N-terminal region of Rad52, which can anneal complementary DNA strands, and is independent of its Rad51-assembly function. Our findings show that Rad52 functions in temporally and biochemically distinct reactions and suggest a general annealing mechanism for reuniting DSB ends during recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Meiose/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Conformação de Ácido Nucleico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell ; 31(3): 324-36, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18691965

RESUMO

Saccharomyces cerevisiae RecQ helicase, Sgs1, and XPF family endonuclease, Mus81-Mms4, are implicated in processing joint molecule (JM) recombination intermediates. We show that cells lacking either enzyme frequently experience chromosome segregation problems during meiosis and that when both enzymes are absent attempted segregation fails catastrophically. In all cases, segregation appears to be impeded by unresolved JMs. Analysis of the DNA events of recombination indicates that Sgs1 limits aberrant JM structures that result from secondary strand-invasion events and often require Mus81-Mms4 for their normal resolution. Aberrant JMs contain high levels of single Holliday junctions and include intersister JMs, multichromatid JMs comprising three and four chromatids, and newly identified recombinant JMs containing two chromatids, one of which has undergone crossing over. Despite persistent JMs in sgs1 mms4 double mutants, crossover and noncrossover products still form at high levels. We conclude that Sgs1 and Mus81-Mms4 collaborate to eliminate aberrant JMs, whereas as-yet-unidentified enzymes process normal JMs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Meiose , RecQ Helicases/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Transativadores/metabolismo , Segregação de Cromossomos , Troca Genética/genética , Ciclina B/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/ultraestrutura , Endonucleases Flap , Mutação/genética , Fatores de Tempo
5.
Methods Mol Biol ; 557: 209-34, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19799185

RESUMO

Joint Molecule (JM) recombination intermediates result from DNA strand-exchange between homologous chromosomes. Physical monitoring of JM formation in budding yeast has provided a wealth of information about the timing and mechanism of meiotic recombination. These assays are especially informative when applied to the analysis of mutants for which genetic analysis of recombination is impossible, i.e. mutants that die during meiosis. This chapter describes three distinct methods to stabilize JMs against thermally driven dissolution as well as electrophoretic approaches to resolve and detect JMs at two well-characterized recombination hotspots.


Assuntos
Instabilidade Cromossômica/fisiologia , Meiose/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Algoritmos , DNA Fúngico/isolamento & purificação , Eletroforese em Gel de Ágar/métodos , Modelos Biológicos , Mapeamento por Restrição/métodos , Saccharomyces cerevisiae/química
6.
Nat Genet ; 40(3): 299-309, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18297071

RESUMO

Meiotic crossing-over is highly regulated such that each homolog pair typically receives at least one crossover (assurance) and adjacent crossovers are widely spaced (interference). Here we provide evidence that interference and assurance are mechanistically distinct processes that are separated by mutations in a new ZMM (Zip, Msh, Mer) protein from Saccharomyces cerevisiae, Spo16. Like other zmm mutants, spo16 cells have defects in both crossing-over and synaptonemal complex formation. Unlike in previously characterized zmm mutants, the residual crossovers in spo16 cells show interference comparable to that in the wild type. Spo16 interacts with a second ZMM protein, Spo22 (also known as Zip4), and spo22 mutants also show normal interference. Notably, assembly of the MutS homologs Msh4 and Msh5 on chromosomes occurs in both spo16 and spo22, but not in other zmm mutants. We suggest that crossover interference requires the normal assembly of recombination complexes containing Msh4 and Msh5 but does not require Spo16- and Spo22-dependent extension of synaptonemal complexes. In contrast, crossover assurance requires all ZMM proteins and full-length synaptonemal complexes.


Assuntos
Pareamento Cromossômico/fisiologia , Troca Genética/fisiologia , Meiose/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico/genética , Cromossomos Fúngicos , Proteínas de Ligação a DNA/fisiologia , Dimerização , Hibridização in Situ Fluorescente , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Mutantes/fisiologia , Proteínas Nucleares , Organismos Geneticamente Modificados , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/fisiologia , Distribuição Tecidual , Ubiquitina-Proteína Ligases/fisiologia
7.
Cell ; 130(2): 259-72, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17662941

RESUMO

Bloom's helicase (BLM) is thought to prevent crossing-over during DNA double-strand-break repair (DSBR) by disassembling double-Holliday junctions (dHJs) or by preventing their formation. We show that the Saccharomyces cerevisiae BLM ortholog, Sgs1, prevents aberrant crossing-over during meiosis by suppressing formation of joint molecules (JMs) comprising three and four interconnected duplexes. Sgs1 and procrossover factors, Msh5 and Mlh3, are antagonistic since Sgs1 prevents dHJ formation in msh5 cells and sgs1 mutation alleviates crossover defects of both msh5 and mlh3 mutants. We propose that differential activity of Sgs1 and procrossover factors at the two DSB ends effects productive formation of dHJs and crossovers and prevents multichromatid JMs and counterproductive crossing-over. Strand invasion of different templates by both DSB ends may be a common feature of DSBR that increases repair efficiency but also the likelihood of associated crossing-over. Thus, by disrupting aberrant JMs, BLM-related helicases maximize repair efficiency while minimizing the risk of deleterious crossing-over.


Assuntos
Adenosina Trifosfatases/química , Cromátides/metabolismo , Troca Genética/genética , DNA Helicases/química , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Cromátides/ultraestrutura , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Modelos Genéticos , Peso Molecular , Mutação/genética , Saccharomyces cerevisiae/citologia , Troca de Cromátide Irmã , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA