Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 13(10): e1007070, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29065150

RESUMO

Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor ß (TGFß) pathway, osteopontin encoded by the SPP1 gene and latent TGFß binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFß and TGFß-associated pathways. We identified that increased TGFß resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFß and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.


Assuntos
Genes Modificadores , Proteínas de Ligação a TGF-beta Latente/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/genética , Osteopontina/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Anexina A6/genética , Anexina A6/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Músculo Esquelético/lesões , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Osteopontina/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Recuperação de Função Fisiológica , Sarcolema/fisiologia
2.
Heart Fail Clin ; 14(2): 179-188, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29525646

RESUMO

With an increasing understanding of genetic defects leading to cardiomyopathy, focus is shifting to correcting these underlying genetic defects. One approach involves treating mutant RNA through antisense oligonucleotides; the first drug has received regulatory approval to treat specific mutations associated with Duchenne muscular dystrophy. Gene editing is being evaluated in the preclinical setting. For inherited cardiomyopathies, genetic correction strategies require tight specificity for the mutant allele. Gene-editing methods are being tested to create deletions that may be useful to restore protein expression by through the bypass of mutations that restore protein production. Site-specific gene editing, which is required to correct many point mutations, is a less efficient process than inducing deletions.


Assuntos
Cardiomiopatias , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Humanos
3.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761081

RESUMO

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Assuntos
Filaminas , Proteostase , Filaminas/genética , Filaminas/metabolismo , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Masculino , Adulto , Mutação , Bortezomib/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA