Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(26): 266301, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450814

RESUMO

We determined the electrical resistivity of liquid Fe to 135 GPa and 6680 K using a four-probe method in a diamond-anvil cell combined with two novel techniques: (i) enclosing a molten Fe in a sapphire capsule, and (ii) millisecond time-resolved simultaneous measurements of the resistance, x-ray diffraction, and temperature of instantaneously melted Fe. Our results show the minimal temperature dependence of the resistivity of liquid Fe and its anomalous resistivity decrease around 50 GPa, likely associated with a gradual magnetic transition, both in agreement with previous ab initio calculations.


Assuntos
Diamante , Eletricidade , Ferro , Temperatura , Difração de Raios X
2.
Nature ; 534(7605): 95-8, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251282

RESUMO

Earth continuously generates a dipole magnetic field in its convecting liquid outer core by a self-sustained dynamo action. Metallic iron is a dominant component of the outer core, so its electrical and thermal conductivity controls the dynamics and thermal evolution of Earth's core. However, in spite of extensive research, the transport properties of iron under core conditions are still controversial. Since free electrons are a primary carrier of both electric current and heat, the electron scattering mechanism in iron under high pressure and temperature holds the key to understanding the transport properties of planetary cores. Here we measure the electrical resistivity (the reciprocal of electrical conductivity) of iron at the high temperatures (up to 4,500 kelvin) and pressures (megabars) of Earth's core in a laser-heated diamond-anvil cell. The value measured for the resistivity of iron is even lower than the value extrapolated from high-pressure, low-temperature data using the Bloch-Grüneisen law, which considers only the electron-phonon scattering. This shows that the iron resistivity is strongly suppressed by the resistivity saturation effect at high temperatures. The low electrical resistivity of iron indicates the high thermal conductivity of Earth's core, suggesting rapid core cooling and a young inner core less than 0.7 billion years old. Therefore, an abrupt increase in palaeomagnetic field intensity around 1.3 billion years ago may not be related to the birth of the inner core.

3.
Phys Rev Lett ; 124(16): 165701, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383924

RESUMO

The density of liquid iron has been determined up to 116 GPa and 4350 K via static compression experiments following an innovative analysis of diffuse scattering from liquid. The longitudinal sound velocity was also obtained to 45 GPa and 2700 K based on inelastic x-ray scattering measurements. Combining these results with previous shock-wave data, we determine a thermal equation of state for liquid iron. It indicates that Earth's outer core exhibits 7.5%-7.6% density deficit, 3.7%-4.4% velocity excess, and an almost identical adiabatic bulk modulus, with respect to liquid iron.

4.
Inorg Chem ; 59(2): 1256-1264, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31904961

RESUMO

Cs4O6 adopts two distinct crystal structures at ambient pressure. At temperatures below ∼200 K, its ground state structure is tetragonal, incorporating two symmetry-distinct dioxygen anions, diamagnetic peroxide, O22-, and paramagnetic superoxide, O2-, units in a 1:2 ratio, consistent with the presence of charge and orbital order. At high temperatures, its ground state structure is cubic, comprising symmetry-equivalent dioxygen units with an average oxidation state of -4/3, consistent with the adoption of a charge-disordered state. The pressure dependence of the structure of solid Cs4O6 at 300 K and at 13.4 K was followed up to ∼12 GPa by synchrotron X-ray powder diffraction. When a pressure of ∼2 GPa is reached at ambient temperature, an incomplete phase transition that is accompanied by a significant volume reduction (∼2%) to a more densely packed highly anisotropic tetragonal structure, isostructural with the low-temperature ambient-pressure phase of Cs4O6, is encountered. A complete transformation of the cubic (charge-disordered) to the tetragonal (charge-ordered) phase of Cs4O6 is achieved when the hydrostatic pressure exceeds 6 GPa. In contrast, the pressure response of the Cs4O6 cubic/tetragonal phase assemblage at 13.4 K is distinctly different with the cubic and tetragonal phases coexisting over the entire pressure range (to ∼12 GPa) accessed in the present experiments and with only a small fraction of the cubic phase converting to tetragonal. Pressure turns out to be an inefficient stimulus to drive the charge disorder-order transition in Cs4O6 at cryogenic temperatures, presumably due to the high activation barriers (much larger than the thermal energy at 13.4 K) associated with the severe steric hindrance for a rotation of the molecular oxygen units necessitated in the course of the structural transformation.

5.
Opt Express ; 26(4): 4989-5004, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475342

RESUMO

The current advances in new generation X-ray sources are calling for the development and improvement of high-performance optics. Techniques for high-sensitivity phase sensing and wavefront characterisation, preferably performed at-wavelength, are increasingly required for quality control, optimisation and development of such devices. We here show that the recently proposed unified modulated pattern analysis (UMPA) can be used for these purposes. We characterised two polymer X-ray refractive lenses and quantified the effect of beam damage and shape errors on their refractive properties. Measurements were performed with two different setups for UMPA and validated with conventional X-ray grating interferometry. Due to its adaptability to different setups, the ease of implementation and cost-effectiveness, we expect UMPA to find applications for high-throughput quantitative optics characterisation and wavefront sensing.

6.
Nature ; 485(7396): 90-4, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22552097

RESUMO

The determination of the chemical composition of Earth's lower mantle is a long-standing challenge in earth science. Accurate knowledge of sound velocities in the lower-mantle minerals under relevant high-pressure, high-temperature conditions is essential in constraining the mineralogy and chemical composition using seismological observations, but previous acoustic measurements were limited to a range of low pressures and temperatures. Here we determine the shear-wave velocities for silicate perovskite and ferropericlase under the pressure and temperature conditions of the deep lower mantle using Brillouin scattering spectroscopy. The mineralogical model that provides the best fit to a global seismic velocity profile indicates that perovskite constitutes more than 93 per cent by volume of the lower mantle, which is a much higher proportion than that predicted by the conventional peridotitic mantle model. It suggests that the lower mantle is enriched in silicon relative to the upper mantle, which is consistent with the chondritic Earth model. Such chemical stratification implies layered-mantle convection with limited mass transport between the upper and the lower mantle.

7.
J Am Chem Soc ; 139(4): 1392-1395, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094926

RESUMO

We performed variable-temperature synchrotron powder X-ray diffraction measurements and impedance spectroscopy under pressure for silver iodide (AgI) nanoparticles with a diameter of 11 nm. The superionic conducting α-phase of AgI nanoparticles was successfully stabilized down to at least 20 °C by applying a pressure of 0.18 GPa, whereas the transition temperature was 147 °C in bulk AgI at ambient pressure. To our knowledge, this is the first example of the α-phase of AgI existing stably at room temperature.

8.
Inorg Chem ; 56(17): 10535-10542, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28812880

RESUMO

The electronic structures of 35 A2+B4+O3 ternary cubic perovskite oxides, including their hypothetical chemical compositions, were calculated by a hybrid functional method with the expectation that peculiar electronic structures and unique carrier transport properties suitable for semiconductor applications would be hidden in high-symmetry cubic perovskite oxides. We found unique electronic structures of Si-based oxides (A = Mg, Ca, Sr, and Ba, and B = Si). In particular, the unreported cubic BaSiO3 has a very narrow band gap (4.1 eV) compared with conventional nontransition-metal silicates (e.g., ∼9 eV for SiO2 and the calculated value of 7.3 eV for orthorhombic BaSiO3) and a small electron effective mass (0.3m0, where m0 is the free electron rest mass). The narrow band gap is ascribed to the nonbonding state of Si 3s and the weakened Madelung potential. The existence of the predicted cubic perovskite structure of BaSiO3 was experimentally verified by applying a high pressure of 141 GPa. The present finding indicates that it could be possible to develop a new transparent oxide semiconductor of earth abundant silicates if the symmetry of its crystal structure is appropriately chosen. Cubic BaSiO3 is a candidate for high-performance oxide semiconductors if this phase can be stabilized at room temperature and ambient pressure.

9.
Nature ; 466(7303): 221-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20485340

RESUMO

The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition, which is governed by the role of electron correlations characteristic of high-temperature superconducting materials other than fullerides.

10.
Proc Natl Acad Sci U S A ; 110(29): 11720-4, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818624

RESUMO

High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.


Assuntos
Dissulfeto de Carbono/química , Condutividade Elétrica , Conformação Molecular , Pressão , Espalhamento de Radiação , Temperatura
11.
J Am Chem Soc ; 137(44): 14136-48, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26513125

RESUMO

Pressure-induced changes in the solid-state structures and transport properties of three oxobenzene-bridged bisdithiazolyl radicals 2 (R = H, F, Ph) over the range 0-15 GPa are described. All three materials experience compression of their π-stacked architecture, be it (i) 1D ABABAB π-stack (R = Ph), (ii) quasi-1D slipped π-stack (R = H), or (iii) 2D brick-wall π-stack (R = F). While R = H undergoes two structural phase transitions, neither of R = F, Ph display any phase change. All three radicals order as spin-canted antiferromagnets, but spin-canted ordering is lost at pressures <1.5 GPa. At room temperature, their electrical conductivity increases rapidly with pressure, and the thermal activation energy for conduction Eact is eliminated at pressures ranging from ∼3 GPa for R = F to ∼12 GPa for R = Ph, heralding formation of a highly correlated (or bad) metallic state. For R = F, H the pressure-induced Mott insulator to metal conversion has been tracked by measurements of optical conductivity at ambient temperature and electrical resistivity at low temperature. For R = F compression to 6.2 GPa leads to a quasiquadratic temperature dependence of the resistivity over the range 5-300 K, consistent with formation of a 2D Fermi liquid state. DFT band structure calculations suggest that the ease of metallization of these radicals can be ascribed to their multiorbital character. Mixing and overlap of SOMO- and LUMO-based bands affords an increased kinetic energy stabilization of the metallic state relative to a single SOMO-based band system.

12.
Phys Rev Lett ; 115(17): 173005, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551113

RESUMO

The substitution of hydrogen (H) by deuterium (D) in ice Ih and in its H-ordered version, ice XI, produces an anomalous form of volume isotope effect (VIE), i.e., volume expansion. This VIE contrasts with the normal VIE (volume contraction) predicted in ice-VIII and in its H-disordered form, ice VII. Here we investigate the VIE in ice XI and in ice VIII using first principles quasiharmonic calculations. We conclude that normal and anomalous VIEs can be produced in ice VIII and ice XI in sequence by application of pressure (ice XI starting at negative pressures) followed by a third type-anomalous VIE with zero-point volume contraction. The latter should also contribute to the isotope effect in the ice VII → ice X transition. The predicted change between normal and anomalous VIE in ice VIII at 14.3 GPa and 300 K is well reproduced experimentally in ice VII using x-ray diffraction measurements. The present discussion of the VIE is general, and conclusions should be applicable to other solid phases of H(2)O, possibly to liquid water under pressure, and to other H-bonded materials.

13.
J Chem Phys ; 142(2): 024707, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591377

RESUMO

The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI-sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

14.
J Am Chem Soc ; 136(3): 1070-81, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24400662

RESUMO

The crystal structure and charge transport properties of the prototypal oxobenzene-bridged 1,2,3-bisdithiazolyl radical conductor 3a are strongly dependent on pressure. Compression of the as-crystallized α-phase, space group Fdd2, to 3-4 GPa leads to its conversion into a second or ß-phase, in which F-centering is lost. The space group symmetry is lowered to Pbn21, and there is concomitant halving of the a and b axes. A third or γ-phase, also space group Pbn21, is generated by further compression to 8 GPa. The changes in packing that accompany both phase transitions are associated with an "ironing out" of the ruffled ribbon-like architecture of the α-phase, so that consecutive radicals along the ribbons are rendered more nearly coplanar. In the ß-phase the planar ribbons are propagated along the b-glides, while in the γ-phase they follow the n-glides. At ambient pressure 3a is a Mott insulator, displaying high but activated conductivity, with σ(300 K) = 6 × 10(-3) S cm(-1) and E(act) = 0.16 eV. With compression beyond 4 GPa, its conductivity is increased by 3 orders of magnitude, and the thermal activation energy is reduced to zero, heralding the formation of a metallic state. High pressure infrared absorption and reflectivity measurements are consistent with closure of the Mott-Hubbard gap near 4-5 GPa. The results are discussed in the light of DFT calculations on the molecular and band electronic structure of 3a. The presence of a low-lying LUMO in 3a gives rise to high electron affinity which, in turn, creates an electronically much softer radical with a low onsite Coulomb potential U. In addition, considerable crystal orbital (SOMO/LUMO) mixing occurs upon pressurization, so that a metallic state is readily achieved at relatively low applied pressure.

15.
Inorg Chem ; 53(21): 11732-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25310272

RESUMO

The postperovskite phase of ZnGeO3 was confirmed by laser heating experiments of the perovskite phase under 110-130 GPa at high temperature. Ab initio calculations indicated that the phase transition occurs at 133 GPa at 0 K. This postperovskite transition pressure is significantly higher than those reported for other germanates, such as MnGeO3 and MgGeO3. The comparative crystal chemistry of the perovskite-to-postperovskite transition suggests that a relatively elongated b-axis in the low-pressure range resulted in the delay in the transition to the postperovskite phase. Similar to most GdFeO3-type perovskites that transform to the CaIrO3-type postperovskite phase, ZnGeO3 perovskite eventually transformed to the CaIrO3-type postperovskite phase at a critical rotational angle of the GeO6 octahedron. The formation of the postperovskite structure at a very low critical rotational angle for MnGeO3 suggests that relatively large divalent cations likely break down the corner-sharing GeO6 frameworks without a large rotation of GeO6 to form the postperovskite phase.

16.
Proc Natl Acad Sci U S A ; 108(15): 5999-6003, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21444781

RESUMO

We report evidence for the natural dissociation of olivine in a shergottite at high-pressure and high-temperature conditions induced by a dynamic event on Mars. Olivine (Fa(34-41)) adjacent to or entrained in the shock melt vein and melt pockets of Martian meteorite olivine-phyric shergottite Dar al Gani 735 dissociated into (Mg,Fe)SiO(3) perovskite (Pv)+magnesiowüstite (Mw), whereby perovskite partially vitrified during decompression. Transmission electron microscopy observations reveal that microtexture of olivine dissociation products evolves from lamellar to equigranular with increasing temperature at the same pressure condition. This is in accord with the observations of synthetic samples recovered from high-pressure and high-temperature experiments. Equigranular (Mg,Fe)SiO(3) Pv and Mw have 50-100 nm in diameter, and lamellar (Mg,Fe)SiO(3) Pv and Mw have approximately 20 and approximately 10 nm in thickness, respectively. Partitioning coefficient, K(Pv/Mw) = [FeO/MgO]/[FeO/MgO](Mw), between (Mg,Fe)SiO(3) Pv and Mw in equigranular and lamellar textures are approximately 0.15 and approximately 0.78, respectively. The dissociation of olivine implies that the pressure and temperature conditions recorded in the shock melt vein and melt pockets during the dynamic event were approximately 25 GPa but 700 °C at least.

17.
Phys Rev Lett ; 110(23): 235501, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25167509

RESUMO

The recently discovered high pressure phase VII of calcium [M. Sakata et al., Phys. Rev. B 83, 220512(R) (2011)] has the highest superconducting transition temperature (T(c)) of 29 K among all the elements. Understanding the cause for such a high T(c) state is necessary to clarify its crystal structure. The structure of this phase was determined by an x-ray powder diffraction experiment and a density functional theory calculation and was not found to be the usual host-guest type but consisted of a 2×2 supercell in the tetragonal ab plane with a commensurate host-guest ratio of 4/3 along the c axis containing 128 atoms.

18.
J Chem Phys ; 139(10): 104701, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24050356

RESUMO

Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under 2.0-77.0 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ X-ray diffractometry revealed distinct changes in the compressibility of the axial ratios of the host framework with pressure. Raman spectroscopy showed a split in the C-H vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the compressibility change. The results indicate the following: (i) the orientational ordering of the guest methane molecules from an orientationally disordered state occurred at high pressures and low temperatures; and (ii) this guest ordering led to anisotropic contraction in the host framework. Such guest orientational ordering and subsequent anisotropic contraction of the host framework were similar to that reported previously for filled ice Ic hydrogen hydrate. Since phases with different guest-ordering manners were regarded as different phases, existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray study. In addition, above the pressure of the guest-ordered phase, another high-pressure phase developed in the low-temperature region. The deuterated-water host samples were also examined, and the influence of isotopic effects on guest ordering and phase transformation was observed.

19.
Phys Rev Lett ; 108(2): 026403, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22324701

RESUMO

Electrical conductivity of FeO was measured up to 141 GPa and 2480 K in a laser-heated diamond-anvil cell. The results show that rock-salt (B1) type structured FeO metallizes at around 70 GPa and 1900 K without any structural phase transition. We computed fully self-consistently the electronic structure and the electrical conductivity of B1 FeO as a function of pressure and temperature, and found that although insulating as expected at ambient condition, B1 FeO metallizes at high temperatures, consistent with experiments. The observed metallization is related to spin crossover.

20.
Inorg Chem ; 51(12): 6559-66, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22656193

RESUMO

High-pressure structural phase transitions in NaNiF(3) and NaCoF(3) were investigated by conducting in situ synchrotron powder X-ray diffraction experiments using a diamond anvil cell. The perovskite phases (GdFeO(3) type) started to transform into postperovskite phases (CaIrO(3) type) at about 11-14 GPa, even at room temperature. The transition pressure is much lower than those of oxide perovskites. The anisotropic compression behavior led to heavily tilted octahedra that triggered the transition. Unlike oxide postperovskites, fluoropostperovskites remained after decompression to 1 atm. The postperovskite phase in NaCoF(3) broke down into a mixture of unknown phases after laser heating above 26 GPa, and the phases changed into amorphous ones when the pressure was released. High-pressure and high-temperature experiments using a multianvil apparatus were also conducted to elucidate the phase relations in NaCoF(3). Elemental analysis of the recovered amorphous samples indicated that the NaCoF(3) postperovskite disproportionated into two phases. This kind of disproportionation was not evident in NaNiF(3) even after laser heating at 54 GPa. In contrast to the single postpostperovskite phase reported in NaMgF(3), such a postpostperovskite phase was not found in the present compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA