Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Neurosci ; 43(12): 2075-2089, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810227

RESUMO

Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.


Assuntos
Células Ciliadas Auditivas Internas , Perda Auditiva Provocada por Ruído , Masculino , Feminino , Animais , Camundongos , Células Ciliadas Auditivas Internas/fisiologia , Estimulação Acústica/efeitos adversos , Limiar Auditivo/fisiologia , Cóclea/metabolismo , Sinapses/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Macrófagos/metabolismo
2.
J Neurosci ; 41(34): 7171-7181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253626

RESUMO

Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.


Assuntos
Astrócitos/fisiologia , Perda Auditiva Neurossensorial/etiologia , Complexo Mediador/deficiência , Estria Vascular/patologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Medo , Feminino , Reação de Congelamento Cataléptica , Técnicas de Inativação de Genes , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Complexo Mediador/fisiologia , Camundongos , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Distribuição Aleatória , Reflexo de Sobressalto
3.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830090

RESUMO

Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17ß-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.


Assuntos
Cóclea , Estradiol/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Perda Auditiva Provocada por Ruído , Animais , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Feminino , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Camundongos , Ovariectomia
4.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926748

RESUMO

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Ácido Glutâmico/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Sinapses/fisiologia , Envelhecimento/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Limiar Auditivo/fisiologia , Cálcio/metabolismo , Potenciais Evocados Auditivos , Exocitose , Feminino , Dosagem de Genes , Genes Reporter , Células Ciliadas Auditivas Externas/fisiologia , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Receptores de AMPA/fisiologia , Recuperação de Função Fisiológica , Gânglio Espiral da Cóclea/citologia , Sinapses/ultraestrutura
5.
Hum Mol Genet ; 26(19): 3722-3735, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934385

RESUMO

Mutations of the human ATP6V1B1 gene cause distal renal tubular acidosis (dRTA; OMIM #267300) often associated with sensorineural hearing impairment; however, mice with a knockout mutation of Atp6v1b1 were reported to exhibit a compensated acidosis and normal hearing. We discovered a new spontaneous mutation (vortex, symbol vtx) of Atp6v1b1 in an MRL/MpJ (MRL) colony of mice. In contrast to the reported phenotype of the knockout mouse, which was developed on a primarily C57BL/6 (B6) strain background, MRL-Atp6v1b1vtx/vtx mutant mice exhibit profound hearing impairment, which is associated with enlarged endolymphatic compartments of the inner ear. Mutant mice have alkaline urine but do not exhibit overt metabolic acidosis, a renal phenotype similar to that of the Atpbv1b1 knockout mouse. The abnormal inner ear phenotype of MRL- Atp6v1b1vtx/vtx mice was lost when the mutation was transferred onto the C57BL/6J (B6) background, indicating the influence of strain-specific genetic modifiers. To genetically map modifier loci in Atp6v1b1vtx/vtx mice, we analysed ABR thresholds of progeny from a backcross segregating MRL and B6 alleles. We found statistically significant linkage with a locus on Chr 13 that accounts for about 20% of the hearing threshold variation in the backcross mice. The important effect that genetic background has on the inner ear phenotype of Atp6v1b1 mutant mice provides insight into the hearing loss variability associated with dRTA caused by ATP6V1B1 mutations. Because MRL-Atp6v1b1vxt/vtx mice do not recapitulate the metabolic acidosis of dRTA patients, they provide a new genetic model for nonsyndromic deafness with enlarged vestibular aqueduct (EVA; OMIM #600791).


Assuntos
Surdez/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Acidose/genética , Acidose/metabolismo , Acidose Tubular Renal/genética , Acidose Tubular Renal/metabolismo , Animais , Surdez/metabolismo , Modelos Animais de Doenças , Orelha Interna/patologia , Feminino , Ligação Genética , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Aqueduto Vestibular/metabolismo , Aqueduto Vestibular/fisiologia
6.
J Acoust Soc Am ; 146(5): 3668, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795658

RESUMO

Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.


Assuntos
Modelos Animais de Doenças , Perda Auditiva/fisiopatologia , Audição/genética , Camundongos/genética , Animais , Audição/fisiologia , Perda Auditiva/tratamento farmacológico , Perda Auditiva/genética , Humanos , Camundongos/fisiologia , Especificidade da Espécie
7.
J Acoust Soc Am ; 146(5): 4007, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31795683

RESUMO

Acoustic trauma is a feature of the industrial age, in general, and mechanized warfare, in particular. Noise-induced hearing loss (NIHL) and tinnitus have been the number 1 and number 2 disabilities at U.S. Veterans hospitals since 2006. In a reversal of original protocols to identify candidate genes associated with monogenic deafness disorders, unbiased genome-wide association studies now direct animal experiments in order to explore genetic variants common in Homo sapiens. However, even these approaches must utilize animal studies for validation of function and understanding of mechanisms. Animal research currently focuses on genetic expression profiles since the majority of variants occur in non-coding regions, implying regulatory divergences. Moving forward, it will be important in both human and animal research to define the phenotypes of hearing loss and tinnitus, as well as exposure parameters, in order to extricate genes related to acoustic trauma versus those related to aging. It has become clear that common disorders like acoustic trauma are influenced by large numbers of genes, each with small effects, which cumulatively lead to susceptibility to a disorder. A polygenic risk score, which aggregates these small effect sizes of multiple genes, may offer a more accurate description of risk for NIHL and/or tinnitus.


Assuntos
Predisposição Genética para Doença , Perda Auditiva Provocada por Ruído/genética , Zumbido/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Camundongos , Herança Multifatorial , Locos de Características Quantitativas
8.
J Neurosci ; 36(5): 1631-5, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843644

RESUMO

Oncomodulin (Ocm), a member of the parvalbumin family of calcium binding proteins, is expressed predominantly by cochlear outer hair cells in subcellular regions associated with either mechanoelectric transduction or electromotility. Targeted deletion of Ocm caused progressive cochlear dysfunction. Although sound-evoked responses are normal at 1 month, by 4 months, mutants show only minimal distortion product otoacoustic emissions and 70-80 dB threshold shifts in auditory brainstem responses. Thus, Ocm is not critical for cochlear development but does play an essential role for cochlear function in the adult mouse. SIGNIFICANCE STATEMENT: Numerous proteins act as buffers, sensors, or pumps to control calcium levels in cochlear hair cells. In the inner ear, EF-hand calcium buffers may play a significant role in hair cell function but have been very difficult to study. Unlike other reports of genetic disruption of EF-hand calcium buffers, deletion of oncomodulin (Ocm), which is predominately found in outer hair cells, leads to a progressive hearing loss after 1 month, suggesting that Ocm critically protects hearing in the mature ear.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Motivos EF Hand/fisiologia , Audição/fisiologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Perda Auditiva/genética , Perda Auditiva/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
9.
J Neurosci ; 35(45): 15050-61, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558776

RESUMO

Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. SIGNIFICANCE STATEMENT: It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system.


Assuntos
Quimiocina CX3CL1/fisiologia , Células Ciliadas Auditivas/fisiologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Sobrevivência Celular/fisiologia , Cóclea/citologia , Cóclea/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos
10.
J Neurosci ; 35(47): 15582-98, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609154

RESUMO

Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT: Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis.


Assuntos
Progressão da Doença , Perda Auditiva/genética , Perda Auditiva/patologia , Heterozigoto , Mutação/genética , Proteases Específicas de Ubiquitina/genética , Sequência de Aminoácidos , Animais , Cóclea/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
11.
Front Mol Neurosci ; 17: 1368058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486963

RESUMO

The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.

12.
J Inherit Metab Dis ; 36(3): 499-512, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22983812

RESUMO

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. We investigated the effect of gene therapy with a long-terminal-repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice. The LTR vector was injected intravenously to 6-week-old MPS I mice, and the SIN vector was given to neonatal or 6-week-old mice. Adult-LTR, neonatal-SIN, and adult-SIN-treated mice achieved serum IDUA activity of 235 ± 20 (84-fold normal), 127 ± 10, and 71 ± 7 U/ml, respectively. All groups had reduction in histochemical evidence of lysosomal storage in the brain, with the adult-LTR group showing the best response, while adult-LTR mice had reductions in lysosomal storage in the cristae of the vestibular system. Behavioral evaluation was performed at 8 months. Untreated MPS I mice had a markedly reduced ability to hold onto an inverted screen or climb down a pole. LTR-vector-treated mice had marked improvements on both of these tests, whereas neonatal-SIN mice showed improvement in the pole test. We conclude that both vectors can reduce brain disease in MPS I mice, with the LTR vector achieving higher serum IDUA levels and better correction. Vestibular abnormalities may contribute to mobility problems in patients with MPS I, and gene therapy may reduce symptoms.


Assuntos
Terapia Genética/métodos , Iduronidase/genética , Transtornos Mentais/prevenção & controle , Doença dos Neurônios Motores/prevenção & controle , Mucopolissacaridose I/terapia , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Transtornos Mentais/etiologia , Transtornos Mentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/etiologia , Neurônios Motores/fisiologia , Mucopolissacaridose I/complicações , Retroviridae
13.
Mamm Genome ; 23(3-4): 270-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22170629

RESUMO

Calcium-modulating cyclophilin ligand (Caml) is a ubiquitously expressed cytoplasmic protein that is involved in multiple signaling and developmental pathways. An observation in our laboratory of a protein-protein interaction between Caml and the cytoplasmic region of Cadherin23 led us to speculate that Caml might be important in the inner ear and play a role in the development and/or function of hair cells. To address this question, we generated a mouse line in which Caml expression was eliminated in Atoh1-expressing cells of the inner ear upon administration of tamoxifen. Tamoxifen was administered immediately after birth to neonates to assess the effect of loss of Caml in the inner ear during postnatal development. Hearing in treated animals was tested by auditory brain stem response (ABR) analysis and cochlear pathology was evaluated by light microscopy. Lack of Caml expression in the inner ear leads to severe loss of cochlear hair cells and complete deafness. Elucidating the role of Caml in the inner ear will aid our understanding of the molecular pathways important for auditory development and function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Surdez/genética , Deleção de Sequência , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cálcio/metabolismo , Surdez/metabolismo , Modelos Animais de Doenças , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
14.
J Am Acad Audiol ; 23(5): 332-40, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22533976

RESUMO

BACKGROUND: Interindividual variation in cochlear vulnerability to noise and ototoxins must in part reflect allelic variation in genes that largely remain unknown. Work in our laboratory has shown that young adult CBA/J mice are more vulnerable to cochlear noise injury than are similar-aged mice of other well-studied strains such as C57BL/6J (B6). Conversely, young CBA/J mice are dramatically protected against noise exposure by low-dose kanamycin (KM) treatment, while B6 mice are not. Genetic differences that distinguish these two strains may include genes that help establish the early "sensitive period" in mammals, as well as genes that shape innate protective responses to stress. These genes may have human homologs that exert similar influences and thereby partly govern individual risk of acquired hearing loss. PURPOSE: We hypothesize that young CBA/J and B6 mice carry different alleles at unknown loci that mediate their characteristic sensitivities to noise and responses to kanamycin. The first step in any experimental genetic analysis of two divergent populations is to examine F1 hybrids formed from these. Accordingly, we evaluated both noise vulnerability and the extent of protection from noise by low-dose KM in 6-wk-old F1 hybrids derived from a B6 × CBA/J cross. STUDY SAMPLE: The study included 52 CBA/J, 59 C57BL/6J (B6), and 45 (B6 × CBA/J) F1 hybrid mice, aged 6 wk at time of noise exposure. Both genders were included. INTERVENTION: For experiments aimed at noise vulnerability, B6 and F1 mice were exposed to loud broadband noise (4-45 kHz, 110 dB SPL) for varying durations, and the resulting noise-induced permanent threshold shifts (NIPTSs, measured 2 wk postnoise) were compared with previous data from CBA/J mice. For experiments aimed at KM-based "protectability," CBA/J, B6, and F1 mice received either kanamycin (300 mg/kg, sc) or saline twice daily for 10 days and then were noise exposed for 30 min, followed by measurement of NIPTS at 2 wk postnoise. DATA COLLECTION AND ANALYSIS: Data comprised auditory brainstem response (ABR) thresholds examined by two-way ANOVA (threshold × frequency, group) and derived metrics for NIPTS, plotted versus noise duration. RESULTS: The "threshold" noise exposure duration for NIPTS in F1 hybrid mice was similar to that in CBA/J. Like CBA/J mice, F1 mice were also significantly protected from noise by KM although the protection appeared less robust than in the CBA/J parent strain. B6 mice appeared harmed by KM alone, even without noise exposure. None of the experimental groups provided any evidence for synergistic interactions between noise and KM. CONCLUSIONS: Our data support the hypothesis that young CBA/J and B6 mice carry different alleles that underlie their divergent responses to KM and sensitivities to noise exposure. While the number and type of genes remain unknown, they are worth pursuing because they establish completely novel hearing phenotypes with potential relevance to humans. Our results lay the foundation for mapping of the underlying genes, and ultimately gene identification.


Assuntos
Alelos , Antibacterianos/farmacologia , Perda Auditiva Provocada por Ruído/genética , Hibridização Genética/genética , Canamicina/farmacologia , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos CBA/genética , Ruído/efeitos adversos , Animais , Fadiga Auditiva/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Injeções Subcutâneas , Masculino , Camundongos , Espectrografia do Som
15.
Mol Ther ; 18(2): 334-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19844196

RESUMO

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to deficiency in alpha-L-iduronidase (IDUA) that results in accumulation of glycosaminoglycans (GAGs) throughout the body, causing numerous clinical defects. Intravenous administration of a gamma-retroviral vector (gamma-RV) with an intact long terminal repeat (LTR) reduced the clinical manifestations of MPS I, but could cause insertional mutagenesis. Although self-inactivating (SIN) gamma-RVs in which the enhancer and promoter elements in the viral LTR are absent after transduction reduces this risk, such vectors could be less effective. This report demonstrates that intravenous (i.v.) injection of a SIN gamma-RV expressing canine IDUA from the liver-specific human alpha(1)-antitrypsin promoter into adult or newborn MPS I mice completely prevents biochemical abnormalities in several organs, and improved bone disease, vision, hearing, and aorta to a similar extent as was seen with administration of the LTR-intact vector to adults. Improvements were less profound than when using an LTR-intact gamma-RV in newborns, which likely reflects a lower level of transduction and expression for the SIN vector-transduced mice, and might be overcome by using a higher dose of SIN vector. A SIN gamma-RV vector ameliorates clinical manifestations of MPS I in mice and should be safer than an LTR-intact gamma-RV.


Assuntos
Vetores Genéticos/genética , Mucopolissacaridose I/terapia , Retroviridae/genética , Animais , Cães , Terapia Genética/métodos , Humanos , Iduronidase/genética , Iduronidase/fisiologia , Marmota , Camundongos , Regiões Promotoras Genéticas/genética , Sequências Repetidas Terminais/genética , Sequências Repetidas Terminais/fisiologia , alfa 1-Antitripsina/genética
16.
Mol Ther ; 18(5): 873-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20179679

RESUMO

Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease resulting from a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. In an attempt to correct the disease in the murine model of MPS IIIB, neonatal mice were treated with intracranial AAV2/5-NAGLU (AAV), syngeneic bone marrow transplant (BMT), or both (AAV/BMT). All treatments resulted in some improvement in clinical phenotype. Adeno-associated viral (AAV) treatment resulted in improvements in lifespan, motor function, hearing, time to activity onset, and daytime activity level, but no reduction of lysosomal storage. BMT resulted in improved hearing by 9 months, and improved circadian measures, but had no effect on lifespan, motor function, or central nervous system (CNS) lysosomal storage. AAV/BMT treatment resulted in improvements in hearing, time to activity onset, motor function, and reduced CNS lysosomal storage, but had no effect on lifespan. Combination therapy compared to either therapy alone resulted in synergistic effects on hearing and CNS lysosomal inclusions but antagonistic effects on motor function and lifespan. AAV alone is more efficacious than BMT or AAV/BMT treatment for lifespan. BMT was the least efficacious treatment by all measures. CNS-directed AAV treatment alone appears to be the preferred treatment, combining the most efficacy with the least toxicity of the approaches assessed.


Assuntos
Transplante de Medula Óssea/métodos , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Mucopolissacaridose III/terapia , Animais , Terapia Combinada , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose III/genética , Resultado do Tratamento
17.
J Am Acad Audiol ; 32(10): 661-669, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35609593

RESUMO

Sensorineural hearing loss (SNHL) is typically a permanent and often progressive condition that is commonly attributed to sensory cell loss. All vertebrates except mammals can regenerate lost sensory cells. Thus, SNHL is currently only treated with hearing aids or cochlear implants. There has been extensive research to understand how regeneration occurs in nonmammals, how hair cells form during development, and what limits regeneration in maturing mammals. These studies motivated efforts to identify therapeutic interventions to regenerate hair cells as a treatment for hearing loss, with a focus on targeting supporting cells to form new sensory hair cells. The approaches include gene therapy and small molecule delivery to the inner ear. At the time of this publication, early-stage clinical trials have been conducted to test targets that have shown evidence of regenerating sensory hair cells in preclinical models. As these potential treatments move closer to a clinical reality, it will be important to understand which therapeutic option is most appropriate for a given population. It is also important to consider which audiological tests should be administered to identify hearing improvement while considering the pharmacokinetics and mechanism of a given approach. Some impacts on audiological practice could include implementing less common audiological measures as standard procedure. As devices are not capable of repairing the damaged underlying biology, hair-cell regeneration treatments could allow patients to benefit more from their devices, move from a cochlear implant candidate to a hearing aid candidate, or move a subject to not needing an assistive device. Here, we describe the background, current state, and future implications of hair-cell regeneration research.


Assuntos
Orelha Interna , Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/terapia , Humanos , Mamíferos , Regeneração
18.
Hear Res ; 409: 108327, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388681

RESUMO

CACHD1 recently was shown to be an α2δ-like subunit that can modulate the activity of some types of voltage-gated calcium channels, including the low-voltage activated, T-type CaV3 channels. CACHD1 is widely expressed in the central nervous system but its biological functions and relationship to disease states are unknown. Here, we report that mice with deleterious Cachd1 mutations are hearing impaired and have balance defects, demonstrating that CACHD1 is functionally important in the peripheral auditory and vestibular organs of the inner ear. The vestibular dysfunction of Cachd1 mutant mice, exhibited by leaning and head tilting behaviors, is related to a deficiency of calcium carbonate crystals (otoconia) in the saccule and utricle. The auditory dysfunction, shown by ABR threshold elevations and reduced DPOAEs, is associated with reduced endocochlear potentials and increased endolymph calcium concentrations. Paint-fills of mutant inner ears from prenatal and newborn mice revealed dilation of the membranous labyrinth caused by an enlarged volume of endolymph. These pathologies all can be related to a disturbance of calcium homeostasis in the endolymph of the inner ear, presumably caused by the loss of CACHD1 regulatory effects on voltage-gated calcium channel activity. Cachd1 expression in the cochlea appears stronger in late embryonic stages than in adults, suggesting an early role in establishing endolymph calcium concentrations. Our findings provide new insights into CACHD1 function and suggest the involvement of voltage-gated calcium channels in endolymph homeostasis, essential for normal auditory and vestibular function.


Assuntos
Audição , Homeostase , Animais , Animais Recém-Nascidos , Cálcio , Canais de Cálcio , Feminino , Camundongos , Gravidez , Vestíbulo do Labirinto
19.
Dev Cell ; 56(10): 1526-1540.e7, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33964205

RESUMO

In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.


Assuntos
Cóclea/citologia , Citoesqueleto/metabolismo , Audição/fisiologia , Proteínas dos Microfilamentos/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Sequência de Bases , Citoesqueleto/ultraestrutura , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Microtúbulos/metabolismo , Mutação/genética , Transporte Proteico , Som , Vibração , Sequenciamento do Exoma
20.
J Biol Chem ; 284(43): 29684-91, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19700765

RESUMO

Lysosomal storage diseases (LSD) are metabolic disorders characterized by accumulation of undegraded material. The mucopolysaccharidoses (MPS) are LSDs defined by the storage of glycosaminoglycans. Previously, we hypothesized that cells affected with LSD have increased energy expenditure for biosynthesis because of deficiencies of raw materials sequestered within the lysosome. Thus, LSDs can be characterized as diseases of deficiency as well as overabundance (lysosomal storage). In this study, metabolite analysis identified deficiencies in simple sugars, nucleotides, and lipids in the livers of MPSI mice. In contrast, most amino acids, amino acid derivatives, dipeptides, and urea were elevated. These data suggest that protein catabolism, perhaps because of increased autophagy, is at least partially fulfilling intermediary metabolism. Thus, maintaining glycosaminoglycan synthesis in the absence of recycled precursors results in major shifts in the energy utilization of the cells. A high fat diet increased simple sugars and some fats and lowered the apparent protein catabolism. Interestingly, autophagy, which is increased in several LSDs, is responsive to dietary intervention and is reduced in MPSVII and MPSI mice fed a high fat diet. Although long term dietary treatment improved body weight in MPSVII mice, it failed to improve life span or retinal function. In addition, the ventricular hypertrophy and proximal aorta dilation observed in MPSVII mice were unchanged by a high fat, simple sugar diet. As the mechanism of this energy imbalance is better understood, a more targeted nutrient approach may yet prove beneficial as an adjunct therapy to traditional approaches.


Assuntos
Metabolismo Energético , Glicosaminoglicanos/metabolismo , Lisossomos/metabolismo , Mucopolissacaridoses/metabolismo , Animais , Autofagia/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Longevidade/efeitos dos fármacos , Camundongos , Mucopolissacaridoses/dietoterapia , Mucopolissacaridoses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA