Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32265562

RESUMO

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Wolbachia/fisiologia , Aedes/crescimento & desenvolvimento , Migração Animal , Animais , California , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Masculino , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/crescimento & desenvolvimento , Dinâmica Populacional , Caracteres Sexuais
3.
Nat Microbiol ; 4(11): 1832-1839, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451771

RESUMO

The dengue, Zika and chikungunya viruses are transmitted by the mosquito Aedes aegypti and pose a substantial threat to global public health. Current vaccines and mosquito control strategies have limited efficacy, so novel interventions are needed1,2. Wolbachia are bacteria that inhabit insect cells and have been found to reduce viral infection-a phenotype that is referred to as viral 'blocking'3. Although not naturally found in A. aegypti4, Wolbachia were stably introduced into this mosquito in 20114,5 and were shown to reduce the transmission potential of dengue, Zika and chikungunya6,7. Subsequent field trials showed Wolbachia's ability to spread through A. aegypti populations and reduce the local incidence of dengue fever8. Despite these successes, the evolutionary stability of viral blocking is unknown. Here, we utilized artificial selection to reveal genetic variation in the mosquito that affects Wolbachia-mediated dengue blocking. We found that mosquitoes exhibiting weaker blocking also have reduced fitness, suggesting the potential for natural selection to maintain blocking. We also identified A. aegypti genes that affect blocking strength, shedding light on a possible mechanism for the trait. These results will inform the use of Wolbachia as biocontrol agents against mosquito-borne viruses and direct further research into measuring and improving their efficacy.


Assuntos
Aedes/genética , Vírus da Dengue/patogenicidade , Proteínas de Insetos/genética , Wolbachia/fisiologia , Aedes/microbiologia , Aedes/virologia , Animais , Vírus da Dengue/genética , Evolução Molecular , Feminino , Frequência do Gene , Aptidão Genética , Genoma Bacteriano , Masculino , Mosquitos Vetores/fisiologia , Polimorfismo de Nucleotídeo Único
4.
Parasit Vectors ; 11(1): 178, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530073

RESUMO

The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.


Assuntos
Anopheles/parasitologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium/fisiologia , Animais , Mudança Climática , Meio Ambiente , Período de Incubação de Doenças Infecciosas , Malária/parasitologia , Controle de Mosquitos , Plasmodium/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
5.
Artigo em Inglês | MEDLINE | ID: mdl-28869513

RESUMO

Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.


Assuntos
Culicidae/genética , Transmissão de Doença Infecciosa/prevenção & controle , Tecnologia de Impulso Genético , Controle de Mosquitos/métodos , Animais , Sistemas CRISPR-Cas , Vetores de Doenças , Humanos
7.
Parasit Vectors ; 9: 113, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26927687

RESUMO

BACKGROUND: Malaria-infected mosquitoes have been reported to be more likely to take a blood meal when parasites are infectious than when non-infectious. This change in feeding behavior increases the likelihood of malaria transmission, and has been considered an example of parasite manipulation of host behavior. However, immune challenge with heat-killed Escherichia coli induces the same behavior, suggesting that altered feeding behavior may be driven by adaptive responses of hosts to cope with an immune response, rather than by parasite-specific factors. Here we tested the alternative hypothesis that down-regulated feeding behavior prior to infectiousness is a mosquito adaptation that increases fitness during infection. METHODS: We measured the impact of immune challenge and blood feeding on the fitness of individual mosquitoes. After an initial blood meal, Anopheles stephensi Liston mosquitoes were experimentally challenged with heat-killed E. coli at a dose known to mimic the same temporal changes in mosquito feeding behavior as active malaria infection. We then tracked daily egg production and survivorship of females maintained on blood-feeding regimes that either mimicked down-regulated feeding behaviors observed during early malaria infection, or were fed on a four-day feeding cycle typically associated with uninfected mosquitoes. RESULTS: Restricting access to blood meals enhanced mosquito survival but lowered lifetime reproduction. Immune-challenge did not impact either fitness component. Combining fecundity and survival to estimate the population-scale intrinsic rate of increase (r), we found that, contrary to the mosquito adaptation hypothesis, mosquito fitness decreased if blood feeding was delayed following an immune challenge. CONCLUSIONS: Our data provide no support for the idea that malaria-induced suppression of blood feeding is an adaptation by mosquitoes to reduce the impact of immune challenge. Alternatively, the behavioral alterations may be neither host nor parasite adaptations, but rather a consequence of constraints imposed on feeding by activation of the mosquito immune response, i.e. non-adaptive illness-induced anorexia. Future work incorporating field conditions and different immune challenges could further clarify the effect of altered feeding on mosquito and parasite fitness.


Assuntos
Anopheles/fisiologia , Escherichia coli/imunologia , Animais , Anopheles/imunologia , Comportamento Alimentar , Reprodução , Análise de Sobrevida
8.
Ecol Evol ; 5(21): 4819-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640662

RESUMO

Understanding the selective forces that shape dispersal strategies is a fundamental goal of evolutionary ecology and is increasingly important in changing, human-altered environments. Sex-biased dispersal (SBD) is common in dioecious taxa, and understanding variation in the direction and magnitude of SBD across taxa has been a persistent challenge. We took a comparative, laboratory-based approach using 16 groups (species or strains) of bean beetles (genera Acanthoscelides, Callosobruchus, and Zabrotes, including 10 strains of one species) to test two predictions that emerge from dominant hypotheses for the evolution of SBD: (1) groups that suffer greater costs of inbreeding should exhibit greater SBD in favor of either sex (inbreeding avoidance hypothesis) and (2) groups with stronger local mate competition should exhibit greater male bias in dispersal (kin competition avoidance hypothesis). We used laboratory experiments to quantify SBD in crawling dispersal, the fitness effects of inbreeding, and the degree of polygyny (number of female mates per male), a proxy for local mate competition. While we found that both polygyny and male-biased dispersal were common across bean beetle groups, consistent with the kin competition avoidance hypothesis, quantitative relationships between trait values did not support the predictions. Across groups, there was no significant association between SBD and effects of inbreeding nor SBD and degree of polygyny, using either raw values or phylogenetically independent contrasts. We discuss possible limitations of our experimental approach for detecting the predicted relationships, as well as reasons why single-factor hypotheses may be too simplistic to explain the evolution of SBD.

9.
Sci Rep ; 5: 11947, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26153094

RESUMO

Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.


Assuntos
Culicidae/fisiologia , Insulina/metabolismo , Malária/parasitologia , Animais , Culicidae/imunologia , Comportamento Alimentar , Feminino , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Parasita , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Malária/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Morfolinos/metabolismo , Fenótipo , Plasmodium falciparum/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA