Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 29(12): 123110, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893639

RESUMO

We numerically study the spatiotemporal dynamics of a turbulent coaxial jet in a model rocket engine combustor from the viewpoints of symbolic information-theory quantifiers and complex networks. The dynamic behavior of flow velocity undergoes a significant transition from a stochastic to chaotic state as the turbulent jet moves downstream. The small-world nature exists in the near field forming a stochastic state, whereas it disappears by the formation of a chaotic state in the far field. The dynamic behavior of hydrogen and oxygen concentrations in the far field also represents deterministic chaos. The simultaneous dynamic behavior with chaotic mixing forms the phase-synchronization state.

2.
Opt Express ; 24(23): 26300-26306, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857365

RESUMO

In this paper, an optical phase-locked loop assisted by sum-frequency and second-harmonic generation (SS-OPLL) for frequency nondegenerate optical parametric phase-sensitive amplifier repeaters is experimentally demonstrated. First, theoretical derivations show that carrier extraction from phase-conjugated twin waves (PCTWs) and reference light generation are achieved by sum-frequency generation; therefore, the SS-OPLL circuit enables optical phase locking between PCTWs and a pump wave by a simple architecture based on a balanced OPLL. Then, optical phase locking between 20-Gbit/s quadrature phase-shift keying PCTWs and an individual pump source is experimentally demonstrated. Experimental results indicate that phase errors were reduced during the SS-OPLL operation.

3.
Phys Rev E ; 99(3-1): 032208, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999467

RESUMO

We numerically study the spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor using the theories of complex networks and synchronization. The turbulence network, which consists of nodes and vertexes in weighted networks between vortices, can characterize the complex spatiotemporal structure of a flow field during thermoacoustic combustion instability. The transfer entropy allows us to identify the driving region of thermoacoustic combustion instability. In addition to the order parameter, a phase parameter newly proposed in this study is useful for capturing the precursor of thermoacoustic combustion instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA