Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 31(26): 26LT01, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32168495

RESUMO

Surface oxidation employing neutral oxygen irradiation significantly improves the switching and synaptic performance of ZnO-based transparent memristor devices. The endurance of the as-irradiated device is increased by 100 times, and the operating current can be lowered by 10 times as compared with the as-deposited device. Moreover, the performance-enhanced device has an excellent analog behavior that can exhibit 3 bits per cell nonvolatile multistate characteristics and perform 15 stable epochs of synaptic operations with highly linear weight updates. A simulated artificial neural network comprising 1600 synapses confirms the superiority of the enhanced device in processing a 40 × 40 pixels grayscale image. The irradiation effectively decreases the concentration of oxygen vacancy donor defects and promotes oxygen interstitial acceptor defects on the surface of the ZnO films, which consequently modulate the redox process during rupture and rejuvenation of the filament. This work not only proposes the potential of ZnO-based memristor devices for high-density invisible data storage and in-memory computing application but also offers valuable insight in designing high-performance memristor devices, regardless of the oxide system used, by taking advantage of our neutral oxygen irradiation technique.

2.
Nat Mater ; 10(8): 591-5, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706012

RESUMO

Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.


Assuntos
Potenciação de Longa Duração/fisiologia , Compostos de Prata/química , Sinapses/fisiologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Plasticidade Neuronal
3.
Sci Technol Adv Mater ; 13(1): 013002, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877466

RESUMO

In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor.

4.
Sci Technol Adv Mater ; 12(1): 013003, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877376

RESUMO

Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review.

5.
Sci Adv ; 4(2): eaar2250, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29507887

RESUMO

Current-induced magnetization switching through spin-orbit torques is the fundamental building block of spin-orbitronics, which promises high-performance, low-power memory and logic devices. The spin-orbit torques generally arise from spin-orbit coupling of heavy metals. However, even in a heterostructure where a metallic magnet is sandwiched by two different insulators, a nonzero spin-orbit torque is expected because of the broken inversion symmetry; an electrical insulator can be a source of the spin-orbit torques. We demonstrate current-induced magnetization switching using an insulator. We show that oxygen incorporation into the most widely used spintronic material, Pt, turns the heavy metal into an electrically insulating generator of the spin-orbit torques, which enables the electrical switching of perpendicular magnetization in a ferrimagnet sandwiched by insulating oxides. We also show that the spin-orbit torques generated from the Pt oxide can be controlled electrically through voltage-driven oxygen migration. These findings open a route toward energy-efficient, voltage-programmable spin-orbit devices based on insulating metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA