Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Evol Biol ; 37(3): 283-289, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340333

RESUMO

Flooding or rain is a threat to many insects in nature, including herbivorous invertebrates whose hosts are emergent aquatic plants. They may thus have developed particular adaptations to withstand the flooding that is a feature of emergent plants' environment. The aphid Hyalopterus pruni (Hemiptera: Aphididae) modifies the physical and chemical conditions of its habitat by periodically spreading wax around itself with its hind legs. This behaviour constitutes a form of niche construction. We hypothesized that the aphid decreases its risk of death of own or around other individuals when submerged in water by spreading wax powder secreted from its body onto the leaves of its host plant, Phragmites australis. We compared the hydrophobicity of waxed and normal leaf surfaces. Next, we compared the survival rates of wax-powdering and nonwax-powdering aphids under submerged and rainy conditions in the laboratory and in the field. Finally, we examined whether the aphids' wax-powdering behaviour increased as a result of experiencing brief submergence or rain. The surface of the waxed area was significantly more water-repellent than the surface of unwaxed leaves. The waxed areas held air bubbles when under water. In experiments, aphids without wax around themselves exhibited lower survival rates: 22.9% in laboratory conditions and 15.7% in field conditions after 48 hr underwater. In contrast, aphids that secreted wax had higher survival rates, with 41.5% and 38.2% under laboratory and field conditions, respectively, after the same duration. Aphids exposed to rainfall showed similar results. Moreover, aphids that had experienced rain or submersion for 24 hr engaged in increased wax-powdering behaviour. These results indicate that aphids reduce their risk of drowning by powdering secreted wax onto the surface of leaves around them. Our findings suggest that niche construction by herbivorous invertebrates supports their ability to utilize host plants that grow under stressful conditions, such as emergent plants that are subject to periodic inundation.


Assuntos
Afídeos , Humanos , Animais , Herbivoria , Laboratórios , Folhas de Planta , Água
2.
Naturwissenschaften ; 109(6): 54, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326883

RESUMO

Changes in leaf traits in response to plant-plant interactions affect feeding by insect herbivores. However, the effects of such changes on feeding by vertebrate herbivores remain unclear. We examined the effects of interactions of Aster leiophyllus collected in the field (growing with plants of the same species [aggregated] or with plants of different species [solitary]) or grown in pots (with another A. leiophyllus [intraspecific] or with Carex aphanolepis or Thalictrum baicalense [interspecific]) on the concentration of total phenolics in A. leiophyllus leaves and on sika deer (Cervus nippon) grazing preference in Japan. Deer were presented for 30 s with the first A. leiophyllus leaf (from either aggregated plants or solitary plants) and then for 30 s with the second leaf (solitary or aggregated, respectively). All of the deer presented first with a leaf from a solitary plant ate it, but when deer were presented first with a leaf from an aggregated plant, which had a higher concentration of total phenolics, 50% rejected or left it. About a third of the deer that had been presented first with a leaf from an aggregated plant subsequently rejected the leaf of a solitary plant. The leaves in the intraspecific interaction pot treatment had higher total phenolic concentration and were rejected more by deer than the leaves in the interspecific treatments. Plant-plant interactions affected deer preference, which was also influenced by learning. These results should improve our understanding of both plant grazing by deer and environmental management.


Assuntos
Cervos , Herbivoria , Animais , Cervos/fisiologia , Plantas , Insetos/fisiologia , Folhas de Planta/fisiologia
3.
Am J Bot ; 106(8): 1126-1130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31397892

RESUMO

PREMISE: Plants generally increase root growth in areas with high nutrients in heterogeneous soils, a phenomenon called foraging precision. The physiology of this process is not well understood, but it may involve shoot-root signaling via leaf veins. If this is true, then damage to leaf veins, but not to nearby mesophyll, would reduce plant foraging precision. METHODS: To test this hypothesis, we imposed two leaf damage treatments on Plantago asiatica and Prunus jamasakura, removing either the tip of each main vein or mesophyll tissue between the veins with a 3-mm-diameter hole punch. After 30 days or 20 weeks of plant growth, we measured root biomass in the soil in response to soil nutrient concentration. RESULTS: When leaf mesophyll was damaged, root biomass of both species was greater in nutrient-rich patches than in nutrient-poor patches. However, when leaf veins were damaged, root biomass was similar between patches. CONCLUSIONS: These results suggest the importance of shoot-root signaling in plants, emphasizing that physiological processes are not necessarily restricted to single organs. The idea that herbivores that damage leaf veins may affect a plant's ability to selectively forage in high-nutrient patches is novel, with implications for natural and managed systems.


Assuntos
Folhas de Planta , Raízes de Plantas , Biomassa , Herbivoria , Solo
4.
Plant Signal Behav ; 17(1): 2050628, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35318884

RESUMO

Belowground plant-plant interactions can affect the concentrations of leaf chemicals, but the mechanism is not clear. Here, we investigated the effects of intra- and interspecific root exudates on the growth and leaf chemical content of Rumex obtusifolius. Seedlings of R. obtusifolius were grown with exposure to root exudates collected from other R. obtusifolius plants or from Trifolium repens, Festuca ovina, or Plantago asiatica plants, and the total phenolic, condensed tannin, dry biomass, and chlorophyll contents of the leaves were examined. The root exudates from conspecific plants had no effect on the total phenolic, condensed tannin, and chlorophyll contents of the leaves but did significantly reduce the dry leaf biomass. Root exudates from heterospecific plants had different effects depending on the species. These results were different from the results of a previous study that examined the effects of direct plant-plant interaction in R. obtusifolius. Thus, indirect interaction via root exudates induces different effects in leaves from direct interaction.


Assuntos
Proantocianidinas , Rumex , Clorofila , Exsudatos e Transudatos , Folhas de Planta/química , Poaceae , Rumex/química
5.
Plant Signal Behav ; 13(4): e1451710, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29533122

RESUMO

Previous study reported a novel type of self-discrimination in the tendrils of the vine Cayratia japonica (Vitaceae). However, whether self-discrimination in tendrils is common in vine plant species has not been elucidated. Here, we investigated whether tendrils of Momordica charantia var. pavel (Cucurbitaceae), Cucumis sativus (Cucurbitaceae) and Passiflora caerulea (Passifloraceae) can discriminate self and non-self plants. We also investigated whether the tendrils of M. charantia and C. sativus can discriminate differences in cultivars to determine the discrimination ability for genetic similarity. We found that tendrils of the M. charantia and P. caerulea were more likely to coil around non-self plant than self plants, but not in C. sativus. Our findings support the common occurrence of self-discrimination in tendrils in different plant taxa, although some species lacked it. Furthermore, tendrils of M. charantia more rapidly coil around different cultivars than around same cultivars. The tendrils of M. charantia may can discriminate differences in cultivars.


Assuntos
Cucurbitaceae/metabolismo , Momordica charantia/metabolismo , Passifloraceae/metabolismo , Folhas de Planta/metabolismo , Cucurbitaceae/genética , Momordica charantia/genética , Passifloraceae/genética , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA