Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269623

RESUMO

Melatonin (MEL) is a pleiotropic indolamine that reaches multiple intracellular targets. Among these, MEL binds to calmodulin (CaM) with high affinity. In presence of Ca2+, CaM binds to CaM-dependent kinase II (CaMKII). The Ca2+-CaM/CaMKII pathway regulates a myriad of brain functions in different cellular compartments. Evidence showing the regulation of this cellular pathway by MEL is scarce. Thus, our main objective was to study the interaction of MEL with CaM and its effects on CaMKII activity in two microenvironments (aqueous and lipidic) naturally occurring within the cell. In addition, colocalization of MEL with CaM in vivo was explored in mice brain hippocampus. In vitro CaM-MEL interaction and the structural conformations of CaM in the presence of this indoleamine were assessed through electrophoretic mobility and isoelectric point. The functional consequence of this interaction was evaluated by measuring CaMKII activity. Ca2+-CaM-MEL increased the activity of CaMKII in aqueous buffer but reduced the kinase activity in lipid buffer. Importantly, MEL colocalizes in vivo with Ca2+-CaM in the hippocampus. Our evidence suggests that MEL regulates the key cellular Ca2+-CaM/CaMKII pathway and might explain why physiological MEL concentrations reduce CaMKII activity in some experimental conditions, while in others it drives biological processes through activation of this kinase.


Assuntos
Calmodulina , Melatonina , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Melatonina/farmacologia , Camundongos , Fosforilação
2.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080418

RESUMO

Melatonin (MEL), an indolamine with diverse functions in the brain, has been shown to produce antidepressant-like effects, presumably through stimulating neurogenesis. We recently showed that the combination of MEL with ketamine (KET), an NMDA receptor antagonist, has robust antidepressant-like effects in mice, at doses that, by themselves, are non-effective and have no adverse effects. Here, we show that the KET/MEL combination increases neurogenesis in a clone derived from human olfactory neuronal precursors, a translational pre-clinical model for effects in the human CNS. Neurogenesis was assessed by the formation of cell clusters > 50 µm in diameter, positively stained for nestin, doublecortin, BrdU and Ki67, markers of progenitor cells, neurogenesis, and proliferation. FGF, EGF and BDNF growth factors increased the number of cell clusters in cultured, cloned ONPs. Similarly, KET or MEL increased the number of clusters in a dose-dependent manner. The KET/MEL combination further increased the formation of clusters, with a maximal effect obtained after a triple administration schedule. Our results show that the combination of KET/MEL, at subeffective doses that do not produce adverse effects, stimulate neurogenesis in human neuronal precursors. Moreover, the mechanism by which the combination elicits neurogenesis is meditated by melatonin receptors, CaM Kinase II and CaM antagonism. This could have clinical advantages for the fast treatment of depression.


Assuntos
Ketamina , Melatonina , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Hipocampo/metabolismo , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Neurogênese , Neurônios
3.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502152

RESUMO

Major depressive disorder is a disabling disease with the number of affected individuals increasing each year. Current antidepressant treatments take between three to six weeks to be effective with forty percent of patients being resistant to treatment, making it necessary to search for new antidepressant treatments. Ketamine, a phencyclidine hydrochloride derivative, given intravenously, induces a rapid antidepressant effect in humans. In mice, it causes increased neurogenesis and antidepressant-like effects. However, it also produces psychomimetic effects in humans and in rodents increases the locomotor activity. In contrast, melatonin, a hormone secreted by the pineal gland and synthesized in extrapineal sites, increases new neuron formation and causes antidepressant-like effects in adult rodents with no collateral effects. Here, we assessed the effects of a non-effective dose of ketamine in combination with melatonin (KET/MEL), both on neurogenesis as well as on the antidepressant-like effect in mice. Our results showed that KET/MEL combination increased neurogenesis and produced antidepressant-like effects without altering locomotor activity after both single and triple administration protocols. Our data strongly suggest that KET/MEL combination could be used to simultaneously promote neurogenesis, reverting neuronal atrophy and inducing antidepressant-like effects.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ketamina/uso terapêutico , Melatonina/uso terapêutico , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Ketamina/administração & dosagem , Ketamina/farmacologia , Masculino , Melatonina/administração & dosagem , Melatonina/farmacologia , Camundongos , Neurogênese/efeitos dos fármacos
4.
J Pineal Res ; 56(4): 450-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24650119

RESUMO

Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Citalopram , Depressão , Hipocampo/metabolismo , Melatonina , Neurogênese/efeitos dos fármacos , Animais , Citalopram/agonistas , Citalopram/farmacologia , Depressão/tratamento farmacológico , Depressão/patologia , Depressão/fisiopatologia , Sinergismo Farmacológico , Hipocampo/patologia , Masculino , Melatonina/agonistas , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
5.
Br J Pharmacol ; 175(16): 3200-3208, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29512136

RESUMO

Mood disorders are a spectrum of neuropsychiatric disorders characterized by changes in the emotional state. In particular, major depressive disorder is expected to have a worldwide prevalence of 20% in 2020, representing a huge socio-economic burden. Currently used antidepressant drugs have poor efficacy with only 30% of the patients in remission after the first line of treatment. Importantly, mood disorder patients present uncoupling of circadian rhythms. In this regard, melatonin (5-methoxy-N-acetyltryptamine), an indolamine synthesized by the pineal gland during the night, contributes to synchronization of body rhythms with the environmental light/dark cycle. In this review, we describe evidence supporting antidepressant-like actions of melatonin related to the circadian modulation of neuroplastic changes in the hippocampus. We also present evidence for the role of melatonin receptors and their signalling pathways underlying modulatory effects in neuroplasticity. Finally, we briefly discuss the detrimental consequences of circadian disruption on neuroplasticity and mood disorders, due to the modern human lifestyle. Together, data suggest that melatonin's stimulation of neurogenesis and neuronal differentiation is beneficial to patients with mood disorders. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.


Assuntos
Ritmo Circadiano/fisiologia , Depressão/tratamento farmacológico , Melatonina/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Melatonina/uso terapêutico
6.
Behav Brain Res ; 301: 72-83, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26721469

RESUMO

Because stress may underlie the presence of depressive episodes, strategies to produce protection against or to reverse the effects of stress on neuroplasticity and behavior are relevant. Preclinical studies showed that exposure to stimuli, such as physical activity and environmental enrichment (ENR), produce beneficial effects against stress causing antidepressant-like effects in rodents. Additionally, ENR induces positive effects on neuroplasticity, neurochemistry and behavior at any age of rodents tested. Here, we analyzed whether ENR exposure prevents the development of depressive-like behavior produced by unpredictable, chronic mild stress (CMS) exposure as well as changes in hippocampal neurogenesis in a six-month-old female Balb/C mice, strain that shows low baseline levels of hippocampal neurogenesis. Mice were assigned to one of four groups: (1) normal housing-normal housing (NH-NH), (2) NH-CMS, (3) ENR-NH, or (4) ENR-CMS. The animals were exposed over 46 days to ENR or NH and subsequently to NH or CMS for 4 weeks. ENR induces long-term effects protecting against CMS induction of anhedonia and hopelessness behaviors. Independent of housing conditions, ENR increased the number of proliferative cells (Ki67), and CMS decreased the number of proliferative cells. ENR increased the newborn cells (BrdU) and mature phenotypes of neurons; these effects were not changed by CMS exposure. Similarly, the number of doublecortin-positive cells was not affected by CMS in ENR mice, which showed more cells with complex dendrite arborizations. Our study suggests that ENR induces protection against the effects of CMS on behavior and neuroplasticity in six-month-old Balb/C mice.


Assuntos
Meio Ambiente , Neurônios/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/terapia , Anedonia/fisiologia , Animais , Análise Química do Sangue , Bromodesoxiuridina , Proliferação de Células/fisiologia , Doença Crônica , Corticosterona/sangue , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/terapia , Proteínas do Domínio Duplacortina , Ensaio de Imunoadsorção Enzimática , Feminino , Abrigo para Animais , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/patologia , Neuropeptídeos/metabolismo , Estresse Psicológico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA