Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microb Cell Fact ; 22(1): 204, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807050

RESUMO

BACKGROUND: "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS: This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION: ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.


Assuntos
Etanol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Fermentação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003568

RESUMO

Saccharomyces cerevisiae is a promising host for the bioproduction of higher alcohols, such as 2,3-butanediol (2,3-BDO). Metabolically engineered S. cerevisiae strains that produce 2,3-BDO via glycolysis have been constructed. However, the specific 2,3-BDO production rates of engineered strains must be improved. To identify approaches to improving the 2,3-BDO production rate, we investigated the factors contributing to higher ethanol production rates in certain industrial strains of S. cerevisiae compared to laboratory strains. Sequence analysis of 11 industrial strains revealed the accumulation of many nonsynonymous substitutions in RIM15, a negative regulator of high fermentation capability. Comparative metabolome analysis suggested a positive correlation between the rate of ethanol production and the activity of the pyruvate-consuming pathway. Based on these findings, RIM15 was deleted, and the pyruvate-consuming pathway was activated in YHI030, a metabolically engineered S. cerevisiae strain that produces 2,3-BDO. The titer, specific production rate, and yield of 2,3-BDO in the test tube-scale culture using the YMS106 strain reached 66.4 ± 4.4 mM, 1.17 ± 0.017 mmol (g dry cell weight h)-1, and 0.70 ± 0.03 mol (mol glucose consumed)-1. These values were 2.14-, 2.92-, and 1.81-fold higher than those of the vector control, respectively. These results suggest that bioalcohol production via glycolysis can be enhanced in a metabolically engineered S. cerevisiae strain by deleting RIM15 and activating the pyruvate-consuming pathway.


Assuntos
Ácido Pirúvico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Pirúvico/metabolismo , Engenharia Metabólica/métodos , Butileno Glicóis/metabolismo , Fermentação , Etanol/metabolismo
3.
Hepatology ; 74(4): 1971-1993, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33931882

RESUMO

BACKGROUND AND AIMS: Synthetic cyclin-dependent kinase (CDK) 4/6 inhibitors exert antitumor effects by forcing RB1 in unphosphorylated status, causing not only cell cycle arrest but also cellular senescence, apoptosis, and increased immunogenicity. These agents currently have an indication in advanced breast cancers and are in clinical trials for many other solid tumors. HCC is one of promising targets of CDK4/6 inhibitors. RB family dysfunction is often associated with the initiation of HCC; however, this is revivable, as RB family members are not frequently mutated or deleted in this malignancy. APPROACH AND RESULTS: Loss of all Rb family members in transformation related protein 53 (Trp53)-/- mouse liver resulted in liver tumor reminiscent of human HCC, and re-expression of RB1 sensitized these tumors to a CDK4/6 inhibitor, palbociclib. Introduction of an unphosphorylatable form of RB1 (RB7LP) into multiple liver tumor cell lines induced effects similar to palbociclib. By screening for compounds that enhance the efficacy of RB7LP, we identified an I kappa B kinase (IKK)ß inhibitor Bay 11-7082. Consistently, RB7LP expression and treatment with palbociclib enhanced IKKα/ß phosphorylation and NF-κB activation. Combination therapy using palbociclib with Bay 11-7082 was significantly more effective in hepatoblastoma and HCC treatment than single administration. Moreover, blockade of IKK-NF-κB or AKT pathway enhanced effects of palbociclib on RB1-intact KRAS Kirsten rat sarcoma viral oncogene homolog mutated lung and colon cancers. CONCLUSIONS: In conclusion, CDK4/6 inhibitors have a potential to treat a wide variety of RB1-intact cancers including HCC when combined with an appropriate kinase inhibitor.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Células Hep G2 , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/genética , Camundongos , Transplante de Neoplasias , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/farmacologia , Purinas/uso terapêutico , Piridinas/uso terapêutico , Proteína do Retinoblastoma , Proteína Supressora de Tumor p53/genética , Proteínas de Xenopus
4.
Metab Eng ; 51: 43-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176394

RESUMO

Precise measurement of sugar phosphates in glycolysis and the pentose phosphate (PP) pathway for 13C-metabolic flux analysis (13C-MFA) is needed to understand cancer-specific metabolism. Although various analytical methods have been proposed, analysis of sugar phosphates is challenging because of the structural similarity of various isomers and low intracellular abundance. In this study, gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) is applied to sugar phosphate analysis with o-(2,3,4,5,6-pentafluorobenzyl) oxime (PFBO) and trimethylsilyl (TMS) derivatization. Optimization of the GC temperature gradient achieved baseline separation of sugar phosphates in 31 min. Mass spectra showed the predominant generation of fragment ions containing all carbon atoms in the sugar phosphate backbone. The limit of detection of pentose 5-phosphates and hexose 6-phosphates was 10 nM. The method was applied to 13C-labeling measurement of sugar phosphates for 13C-MFA of the MCF-7 human breast cancer cell line. 13C-labeling of sugar phosphates for 13C-MFA improved the estimation of the net flux and reversible flux of bidirectional reactions in glycolysis and the PP pathway.


Assuntos
Linhagem Celular Tumoral , Análise do Fluxo Metabólico/métodos , Fosfatos Açúcares/análise , Metabolismo Energético , Feminino , Fluorbenzenos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Isomerismo , Células MCF-7 , Oximas , Espectrometria de Massas por Ionização por Electrospray , Compostos de Trimetilsilil/metabolismo
5.
Biotechnol Bioeng ; 114(12): 2782-2793, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28755490

RESUMO

Metabolic engineering of isopropyl alcohol (IPA)-producing Escherichia coli strains was conducted along with 13 C-metabolic flux analysis (MFA). A metabolically engineered E. coli strain expressing the adc gene derived from Clostridium acetobutylicum and the IPADH gene from C. beijerinckii did not produce IPA during its exponential growth phase in the aerobic batch culture. 13 C-MFA was carried out, and revealed a deficiency in NADPH regeneration for IPA production in growth phase. Based on these findings, we used nitrogen-starved culture conditions to reduce NADPH consumption for biomass synthesis. As a result, IPA yield was increased to 20% mol/mol glucose. 13 C-MFA revealed that the relative flux levels through the oxidative pentose phosphate (PP) pathway and the TCA cycle were elevated in nitrogen-starved condition relative to glucose uptake rate. To prevent CO2 release in the 6-phosphogluconate dehydrogenase (6PGDH) reaction, metabolism of this E. coli strain was further engineered to redirect glycolytic flux to the glucose 6-phosphate dehydrogenase (G6PDH) and Entner-Doudoroff (ED) pathway. IPA yield of 55% mol/mol glucose was achieved by combining the nitrogen-starved culture condition with the metabolic redirection. The 13 C-MFA data and intracellular NADPH levels obtained under these IPA production conditions revealed linear correlations between the specific IPA production rate and NADPH concentration, as well as between IPA yield and the pyruvate dehydrogenase (PDH) flux. Our results showed that 13 C-MFA is a helpful tool for metabolic engineering studies, and that further improvement in IPA production by E. coli may be achieved by fine-tuning the cofactor ratio and concentrations, as well as optimizing the metabolic pathways and culture conditions.


Assuntos
2-Propanol/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/fisiologia , 2-Propanol/isolamento & purificação , Proteínas de Bactérias/genética , Isótopos de Carbono/farmacocinética , Escherichia coli/classificação , Escherichia coli/citologia , Melhoramento Genético/métodos , Especificidade da Espécie
6.
Anal Bioanal Chem ; 408(22): 6133-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27342798

RESUMO

Stable isotope labeling experiments using mass spectrometry have been employed to investigate carbon flow levels (metabolic flux) in mammalian, plant, and microbial cells. To achieve a more precise (13)C-metabolic flux analysis ((13)C-MFA), novel fragmentations of tert-butyldimethylsilyl (TBDMS)-amino acids were investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS). The product ion scan analyses of 15 TBDMS-amino acids revealed 24 novel fragment ions. The amino acid-derived carbons included in the five fragment ions were identified by the analyses of (13)C-labeled authentic standards. The identification of the fragment ion at m/z 170 indicated that the isotopic abundance of S-methyl carbon in methionine could be determined from the cleavage of C5 in the precursor of [M-159](+) (m/z 218). It was also confirmed that the precision of (13)C-MFA in Escherichia coli central carbon metabolism could be improved by introducing (13)C-labeling data derived from novel fragmentations. Graphical Abstract Novel collision-induced dissociation fragmentations of tert-butyldimethylsilyl amino acids were investigated and identified by GC-MS/MS.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise do Fluxo Metabólico/métodos , Aminoácidos/análise , Carbono/análise , Carbono/metabolismo , Escherichia coli/química , Compostos de Organossilício/análise , Compostos de Organossilício/metabolismo , Espectrometria de Massas em Tandem
7.
Metab Eng Commun ; 18: e00239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883865

RESUMO

Neutrophils are innate immune cells and the first line of defense for the maintenance of homeostasis. However, our knowledge of the metabolic rewiring associated with their differentiation and immune stimulation is limited. Here, quantitative 13C-metabolic flux analysis was performed using HL-60 cells as the neutrophil model. A metabolic model for 13C-metabolic flux analysis of neutrophils was developed based on the accumulation of 13C in intracellular metabolites derived from 13C-labeled extracellular carbon sources and intracellular macromolecules. Aspartate and glutamate in the medium were identified as carbon sources that enter central carbon metabolism. Furthermore, the breakdown of macromolecules, estimated to be fatty acids and nucleic acids, was observed. Based on these results, a modified metabolic model was used for 13C-metabolic flux analysis of undifferentiated, differentiated, and lipopolysaccharide (LPS)-activated HL-60 cells. The glucose uptake rate and glycolytic flux decreased with differentiation, whereas the tricarboxylic acid (TCA) cycle flux remained constant. The addition of LPS to differentiated HL-60 cells activated the glucose uptake rate and pentose phosphate pathway (PPP) flux levels, resulting in an increased rate of total NADPH regeneration, which could be used to generate reactive oxygen species. The flux levels of fatty acid degradation and synthesis were also increased in LPS-activated HL-60 cells. Overall, this study highlights the quantitative metabolic alterations in multiple pathways via the differentiation and activation of HL-60 cells using 13C-metabolic flux analysis.

8.
J Biosci Bioeng ; 137(3): 187-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281859

RESUMO

Overexpression of proteins by introducing a DNA vector is among the most important tools for the metabolic engineering of microorganisms such as Escherichia coli. Protein overexpression imposes a burden on metabolism because metabolic pathways must supply building blocks for protein and DNA synthesis. Different E. coli strains have distinct metabolic capacities. In this study, two proteins were overexpressed in four E. coli strains (MG1655(DE3), W3110(DE3), BL21star(DE3), and Rosetta(DE3)), and their effects on metabolic burden were investigated. Metabolomic analysis showed that E. coli strains overexpressing green fluorescent protein had decreased levels of several metabolites, with a positive correlation between the number of reduced metabolites and green fluorescent protein expression levels. Moreover, nucleic acid-related metabolites decreased, indicating a metabolic burden in the E. coli strains, and the growth rate and protein expression levels were improved by supplementation with the five nucleosides. In contrast, two strains overexpressing delta rhodopsin, a microbial membrane rhodopsin from Haloterrigena turkmenica, led to a metabolic burden and decrease in the amino acids Ala, Val, Leu, Ile, Thr, Phe, Asp, and Trp, which are the most frequent amino acids in the delta rhodopsin protein sequence. The metabolic burden caused by protein overexpression was influenced by the metabolic capacity of the host strains and the sequences of the overexpressed proteins. Detailed characterization of the effects of protein expression on the metabolic state of engineered cells using metabolomics will provide insights into improving the production of target compounds.


Assuntos
Escherichia coli , Rodopsina , Proteínas de Fluorescência Verde/genética , Escherichia coli/genética , Metaboloma , Aminoácidos , DNA
9.
J Biosci Bioeng ; 135(2): 102-108, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494248

RESUMO

Although various yeast strains used in the food industry have been characterized by multilayer analysis, knowledge of the variation of lipid profiles involved in fermentation characteristics and stress tolerance remains in its infancy. In this study, untargeted lipidomics was applied to 10 yeast strains, including laboratory, baker's, wine, and sake yeasts, which exhibit distinct fermentation phenotypes, to obtain a comprehensive overview of the yeast lipidome. The relative standard deviation (RSD) in the abundance of the 352 identified lipid molecular species was investigated to reveal the specific and common lipids. Lipids containing very long-chain fatty acids and hydroxy long-chain fatty acids showed relatively large RSD, whereas lipids containing acyl chains, which are commonly found in yeast, such as C16-C18, showed less RSD among the 10 strains. Furthermore, principal component analysis of lipid profiles showed similar trends among industrial yeast strains. As lipids are involved in yeast phenotypes, including stress tolerance and fermentation characteristics, correlation analysis was performed with lipid abundance and phenotypes. The results revealed that molecular species with a high RSD in abundance among the 10 strains were correlated with specific stress tolerance and fermentation phenotypes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Lipidômica , Proteínas de Saccharomyces cerevisiae/genética , Vinho/análise , Ácidos Graxos , Fermentação
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659899

RESUMO

Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.


Assuntos
Aspergillus nidulans , Fosfolipídeos , Animais , Aspergillus nidulans/genética , Estágios do Ciclo de Vida , Lipidômica , Especificidade da Espécie
11.
ACS Synth Biol ; 12(1): 305-318, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36563322

RESUMO

Recombination of biosynthetic gene clusters including those of non-ribosomal peptide synthetases (NRPSs) is essential for understanding the mechanisms of biosynthesis. Due to relatively huge gene cluster sizes ranging from 10 to 150 kb, the prevalence of sequence repeats, and inability to clearly define optimal points for manipulation, functional characterization of recombinant NRPSs with maintained activity has been hindered. In this study, we introduce a simple yet rapid approach named "Seamed Express Assembly Method (SEAM)" coupled with Ordered Gene Assembly in Bacillus subtilis (OGAB) to reconstruct fully functional plipastatin NRPS. This approach is enabled by the introduction of restriction enzyme sites as seams at module borders. SEAM-OGAB is then first demonstrated by constructing the ppsABCDE NRPS (38.4 kb) to produce plipastatin, a cyclic decapeptide in B. subtilis. The introduced amino acid level seams do not hinder the NRPS function and enable successful production of plipastatin at a commensurable titer. It is challenging to modify the plipastatin NRPS gene cluster due to the presence of three long direct-repeat sequences; therefore, this study demonstrates that SEAM-OGAB can be readily applied towards the recombination of various NRPSs. Compared to previous NRPS gene assembly methods, the advantage of SEAM-OGAB is that it readily enables the shuffling of NRPS gene modules, and therefore, chimeric NRPSs can be rapidly constructed for the production of novel peptides. This chimeric assembly application of SEAM-OGAB is demonstrated by swapping plipastatin NRPS and surfactin NRPS modules to produce two novel lipopeptides in B. subtilis.


Assuntos
Bacillus subtilis , Peptídeo Sintases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Sintases/metabolismo , Sequência de Bases , Lipopeptídeos/genética
12.
Sci Rep ; 13(1): 18549, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899460

RESUMO

4-hydroxytamoxifen (OHT) is an anti-cancer drug that induces apoptosis in breast cancer cells. Although changes in lipid levels and mitochondrial respiration have been observed in OHT-treated cells, the overall mechanisms underlying these metabolic alterations are poorly understood. In this study, time-series metabolomics and lipidomics were used to analyze the changes in metabolic profiles induced by OHT treatment in the MCF-7 human breast cancer cell line. Lipidomic and metabolomic analyses revealed increases in ceramide, diacylglycerol and triacylglycerol, and decreases in citrate, respectively. Gene expression analyses revealed increased expression of ATP-dependent citrate lyase (ACLY) and subsequent fatty acid biosynthetic enzymes, suggesting that OHT-treated MCF-7 cells activate citrate-to-lipid metabolism. The significance of the observed metabolic changes was evaluated by co-treating MCF-7 cells with OHT and ACLY or a diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor. Co-treatment ameliorated cell death and reduced mitochondrial membrane potential compared to that in OHT treatment alone. The inhibition of cell death by co-treatment with an ACLY inhibitor has been observed in other breast cancer cell lines. These results suggest that citrate-to-lipid metabolism is critical for OHT-induced cell death in breast cancer cell lines.


Assuntos
Neoplasias da Mama , Lipidômica , Humanos , Feminino , Células MCF-7 , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Metaboloma , Citratos
13.
Res Sq ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961431

RESUMO

Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.

14.
Metabolites ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888770

RESUMO

Isotope tracing is a powerful technique for elucidating intracellular metabolism. Experiments utilizing this technique involve various processes, such as the correction of natural isotopes. Although some previously developed software are available for these procedures, there are still time-consuming steps in isotope tracing including the creation of an isotope measurement method in mass spectrometry (MS) and the interpretation of obtained labeling data. Additionally, these multi-step tasks often require data format conversion, which is also time-consuming. In this study, the Isotope Calculation Gadgets, a series of software that supports an entire workflow of isotope-tracing experiments, was developed in the Garuda platform, an open community. Garuda is a graphical user interface-based platform that allows individual operations to be sequentially performed, without data format conversion, which significantly reduces the required time and effort. The developed software includes new features that construct channels for isotopomer measurements, as well as conventional functions such as natural isotope correction, the calculation of fractional labeling and split ratio, and data mapping, thus facilitating an overall workflow of isotope-tracing experiments through smooth functional integration.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34995792

RESUMO

Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.


Assuntos
Lipidômica
16.
Biotechnol J ; 17(3): e2000438, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33983677

RESUMO

BACKGROUND: Various industrial Saccharomyces cerevisiae strains are used for specific processes, such as sake, wine brewing and bread making. Understanding mechanisms underlying the fermentation performance of these strains would be useful for further engineering of the S. cerevisiae metabolism. However, the relationship between the fermentation performance, intra-cellular metabolic states, and other phenotypic characteristics of industrial yeasts is still unclear. In this study, 13 C-metabolic flux analysis of four diploid yeast strains-laboratory, sake, bread, and wine yeasts-was conducted. RESULTS: While the Crabtree effect was observed for all strains, the metabolic flux level of glycolysis was elevated in bread and sake yeast. Furthermore, increased flux levels of the TCA cycle were commonly observed in the three industrial strains. The specific rates of CO2 production, net ATP regeneration, and metabolic heat generation estimated from the metabolic flux distribution were two to three times greater than those of the laboratory strain. The elevation in metabolic heat generation was correlated with the tolerance to low-temperature stress. CONCLUSION: These results indicate that the metabolic flux distribution of sake and bread yeast strains contributes to faster production of ethanol and CO2 . It is also suggested that the generation of metabolic heat is preferable under the actual industrial fermentation conditions.


Assuntos
Saccharomyces cerevisiae , Vinho , Trifosfato de Adenosina/metabolismo , Bebidas Alcoólicas/análise , Dióxido de Carbono/metabolismo , Fermentação , Análise do Fluxo Metabólico , Regeneração , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Termogênese , Vinho/análise
17.
Mass Spectrom (Tokyo) ; 11(1): A0106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713802

RESUMO

In metabolomics studies using high-resolution mass spectrometry (MS), a set of product ion spectra is comprehensively acquired from observed ions using the data-dependent acquisition (DDA) mode of various tandem MS. However, especially for low-intensity signals, it is sometimes difficult to distinguish artifact signals from true fragment ions derived from a precursor ion. Inadequate precision in the measured m/z value is also one of the bottlenecks to narrowing down the candidate compositional formula. In this study, we report that averaging multiple product ion spectra can improve m/z precision as well as the reliability of fragment ions that are observed in such spectra. A graph-based method was applied to cluster a set of similar spectra from multiple DDA data files resulting in creating an averaged product-ion spectrum. The error levels for the m/z values declined following the central limit theorem, which allowed us to reduce the number of candidate compositional formulas. The improved reliability and precision of the averaged spectra will contribute to a more efficient annotation of product ion spectral data.

18.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208210

RESUMO

In mass spectrometry-based metabolomics, the differences in the analytical results from different laboratories/machines are an issue to be considered because various types of machines are used in each laboratory. Moreover, the analytical methods are unique to each laboratory. It is important to understand the reality of inter-laboratory differences in metabolomics. Therefore, we have evaluated whether the differences in analytical methods, with the exception sample pretreatment and including metabolite extraction, are involved in the inter-laboratory differences or not. In this study, nine facilities are evaluated for inter-laboratory comparisons of metabolomic analysis. Identical dried samples prepared from human and mouse plasma are distributed to each laboratory, and the metabolites are measured without the pretreatment that is unique to each laboratory. In these measurements, hydrophilic and hydrophobic metabolites are analyzed using 11 and 7 analytical methods, respectively. The metabolomic data acquired at each laboratory are integrated, and the differences in the metabolomic data from the laboratories are evaluated. No substantial difference in the relative quantitative data (human/mouse) for a little less than 50% of the detected metabolites is observed, and the hydrophilic metabolites have fewer differences between the laboratories compared with hydrophobic metabolites. From evaluating selected quantitatively guaranteed metabolites, the proportion of metabolites without the inter-laboratory differences is observed to be slightly high. It is difficult to resolve the inter-laboratory differences in metabolomics because all laboratories cannot prepare the same analytical environments. However, the results from this study indicate that the inter-laboratory differences in metabolomic data are due to measurement and data analysis rather than sample preparation, which will facilitate the understanding of the problems in metabolomics studies involving multiple laboratories.

19.
Metabolites ; 11(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810392

RESUMO

Lipid A is a characteristic molecule of Gram-negative bacteria that elicits an immune response in mammalian cells. The presence of structurally diverse lipid A types in the human gut bacteria has been suggested before, and this appears associated with the immune response. However, lipid A structures and their quantitative heterogeneity have not been well characterized. In this study, a method of analysis for lipid A using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) was developed and applied to the analyses of Escherichia coli and Bacteroidetes strains. In general, phosphate compounds adsorb on stainless-steel piping and cause peak tailing, but the use of an ammonia-containing alkaline solvent produced sharp lipid A peaks with high sensitivity. The method was applied to E. coli strains, and revealed the accumulation of lipid A with abnormal acyl side chains in knockout strains as well as known diphosphoryl hexa-acylated lipid A in a wild-type strain. The analysis of nine representative strains of Bacteroidetes showed the presence of monophosphoryl penta-acylated lipid A characterized by a highly heterogeneous main acyl chain length. Comparison of the structures and amounts of lipid A among the strains suggested a relationship between lipid A profiles and the phylogenetic classification of the strains.

20.
STAR Protoc ; 2(2): 100492, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33997812

RESUMO

We describe a protocol for identifying bacteria-derived lipid metabolites produced in the guts using antibiotic-treated mice, liquid chromatography tandem mass spectrometry-based lipidomics, and feature-based molecular spectrum networking (FBMN). Untargeted lipidomics using the MS-DIAL 4 program provides information on known and unknown complex lipid molecules. The FBMN technique clusters similar MS2 spectra, facilitating the identification of bacterial lipids. Targeted analysis was used as a complementary method to cover oxylipins. Here, we provide details for targeted and untargeted analyses. For complete details on the use and execution of this protocol, please refer to Yasuda et al. (2020).


Assuntos
Antibacterianos/farmacologia , Cromatografia Líquida/métodos , Microbioma Gastrointestinal , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA