Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Phys Med Rehabil ; 104(10): 1565-1572, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149017

RESUMO

OBJECTIVE: To test the feasibility and efficacy of the VibroTactile Stimulation (VTS) Glove, a wearable device that provides VTS to the impaired limb to reduce spastic hypertonia. DESIGN: Prospective 2-arm intervention study-including 1 group of patients who use Botulinum toxin (BTX-A) for spasticity and 1 group of patients who do not use BTX-A. SETTING: Participants were recruited through rehabilitation and neurology clinics. PARTICIPANTS: Patients with chronic stroke (N=20; mean age=54 years, mean time since stroke=6.9 years). Patients who were previously receiving the standard of care (BTX-A injection) were eligible to participate and started the intervention 12 weeks after their last injection. INTERVENTION: Participants were instructed to use the VTS Glove for 3 hours daily, at home or during everyday activities, for 8 weeks. MAIN OUTCOME MEASURES: Spasticity was assessed with the Modified Ashworth Scale and the Modified Tardieu Scale at baseline and then at 2-week intervals for 12 weeks. Primary outcomes were the difference from baseline and at week 8 (end of VTS Glove use) and week 12 (4 weeks after stopping VTS Glove use). Patients who were receiving BTX-A were also assessed during the 12 weeks preceding the start of VTS Glove use to monitor the effect of BTX-A on spastic hypertonia. Range of motion and participant feedback were also studied. RESULTS: A clinically meaningful difference in spastic hypertonia was found during and after daily VTS Glove use. Modified Ashworth and Modified Tardieu scores were reduced by an average of 0.9 (P=.0014) and 0.7 (P=.0003), respectively, at week 8 of daily VTS Glove use, and by 1.1 (P=.00025) and 0.9 (P=.0001), respectively, 1 month after stopping VTS Glove use. For participants who used BTX-A, 6 out of 11 showed greater change in Modified Ashworth ratings during VTS Glove use (mean=-1.8 vs mean=-1.6 with BTX-A) and 8 out of 11 showed their lowest level of symptoms during VTS Glove use (vs BTX-A). CONCLUSIONS: Daily stimulation from the VTS Glove provides relief of spasticity and hypertonia. For more than half of the participants who had regularly used BTX-A, the VTS Glove provided equal or greater symptom relief.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Pessoa de Meia-Idade , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Toxinas Botulínicas Tipo A/uso terapêutico , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
2.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299958

RESUMO

Effective force modulation during tissue manipulation is important for ensuring safe, robot-assisted, minimally invasive surgery (RMIS). Strict requirements for in vivo applications have led to prior sensor designs that trade off ease of manufacture and integration against force measurement accuracy along the tool axis. Due to this trade-off, there are no commercial, off-the-shelf, 3-degrees-of-freedom (3DoF) force sensors for RMIS available to researchers. This makes it challenging to develop new approaches to indirect sensing and haptic feedback for bimanual telesurgical manipulation. We present a modular 3DoF force sensor that integrates easily with an existing RMIS tool. We achieve this by relaxing biocompatibility and sterilizability requirements and by using commercial load cells and common electromechanical fabrication techniques. The sensor has a range of ±5 N axially and ±3 N laterally with errors of below 0.15 N and maximum errors below 11% of the sensing range in all directions. During telemanipulation, a pair of jaw-mounted sensors achieved average errors below 0.15 N in all directions. It achieved an average grip force error of 0.156 N. The sensor is for bimanual haptic feedback and robotic force control in delicate tissue telemanipulation. As an open-source design, the sensors can be adapted to suit other non-RMIS robotic applications.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Fenômenos Mecânicos , Procedimentos Cirúrgicos Minimamente Invasivos , Retroalimentação , Desenho de Equipamento
3.
IEEE Trans Robot ; 32(6): 1419-1430, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28713227

RESUMO

Concentric tube surgical robots are minimally invasive devices with the advantages of snake-like reconfigurability, long and thin form factor, and placement of actuation outside the patient's body. These robots can also be designed and manufactured to acquire targets in specific patients for treating specific diseases in a manner that minimizes invasiveness. We propose that concentric tube robots can be manufactured using 3-D printing technology on a patient- and procedure-specific basis. In this paper, we define the design requirements and manufacturing constraints for 3-D printed concentric tube robots and experimentally demonstrate the capabilities of these robots. While numerous 3-D printing technologies and materials can be used to create such robots, one successful example uses selective laser sintering to make an outer tube with a polyether block amide and uses stereolithography to make an inner tube with a polypropylene-like material. This enables a tube pair with precurvatures of 0.0775 and 0.0455 mm-1, which can withstand strains of 20% and 5.5% for the outer and inner tubes, respectively.

4.
J Neurophysiol ; 113(6): 1873-84, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25520430

RESUMO

Adaptation is a prominent feature of the human motor system and has been studied extensively in reaching movements. This study characterizes adaptation and generalization during isometric reaching in which the arm remains stationary and the participant controls a virtual cursor via force applied by the hand. We measured how learning of a visual cursor rotation generalizes across workspace 1) to determine the coordinate system that predominates visual rotation learning, and 2) to ascertain whether mapping type, namely position or velocity control, influences transfer. Participants performed virtual reaches to one of two orthogonal training targets with the applied rotation. In a new workspace, participants reached to a single target, similar to the training target in either hand or joint space. Furthermore, a control experiment measured within-workspace generalization to an orthogonal target. Across position and velocity mappings, learning transferred predominantly in intrinsic (joint) space, although the transfer was incomplete. The velocity mapping resulted in significantly larger aftereffects and broader within-workspace generalization than the position mapping, potentially due to slower peak speeds, longer trial times, greater target overshoot, or other factors. Although we cannot rule out a mixed reference frame in our task, the predominance of intrinsic coding of cursor kinematics in the isometric environment opposes the extrinsic coding of arm kinematics in real reaching but matches the intrinsic coding of dynamics found in prior work. These findings have implications for the design of isometric control systems in human-machine interaction or in rehabilitation when coordinated multi-degree-of-freedom movement is difficult to achieve.


Assuntos
Generalização Psicológica , Desempenho Psicomotor , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
5.
Brain ; 137(Pt 7): 1931-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24812203

RESUMO

Cerebellar damage results in uncoordinated, variable and dysmetric movements known as ataxia. Here we show that we can reliably model single-joint reaching trajectories of patients (n = 10), reproduce patient-like deficits in the behaviour of controls (n = 11), and apply patient-specific compensations that improve reaching accuracy (P < 0.02). Our approach was motivated by the theory that the cerebellum is essential for updating and/or storing an internal dynamic model that relates motor commands to changes in body state (e.g. arm position and velocity). We hypothesized that cerebellar damage causes a mismatch between the brain's modelled dynamics and the actual body dynamics, resulting in ataxia. We used both behavioural and computational approaches to demonstrate that specific cerebellar patient deficits result from biased internal models. Our results strongly support the idea that an intact cerebellum is critical for maintaining accurate internal models of dynamics. Importantly, we demonstrate how subject-specific compensation can improve movement in cerebellar patients, who are notoriously unresponsive to treatment.


Assuntos
Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Simulação por Computador , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Movimento/fisiologia , Valor Preditivo dos Testes , Desempenho Psicomotor
6.
J Neurosci ; 33(36): 14301-6, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005283

RESUMO

Because sensation is delayed, real-time movement control requires not just sensing, but also predicting limb position, a function hypothesized for the cerebellum. Such cerebellar predictions could contribute to perception of limb position (i.e., proprioception), particularly when a person actively moves the limb. Here we show that human cerebellar patients have proprioceptive deficits compared with controls during active movement, but not when the arm is moved passively. Furthermore, when healthy subjects move in a force field with unpredictable dynamics, they have active proprioceptive deficits similar to cerebellar patients. Therefore, muscle activity alone is likely insufficient to enhance proprioception and predictability (i.e., an internal model of the body and environment) is important for active movement to benefit proprioception. We conclude that cerebellar patients have an active proprioceptive deficit consistent with disrupted movement prediction rather than an inability to generally enhance peripheral proprioceptive signals during action and suggest that active proprioceptive deficits should be considered a fundamental cerebellar impairment of clinical importance.


Assuntos
Cerebelo/fisiopatologia , Propriocepção , Ataxias Espinocerebelares/fisiopatologia , Idoso , Braço , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Desempenho Psicomotor
7.
J Neurophysiol ; 112(5): 1131-41, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24805077

RESUMO

Here, we investigate the neural mechanisms of detecting lumps embedded in artificial compliant tissues. We performed a combined psychophysical study of humans performing a passive lump detection task with a neurophysiological study in nonhuman primates (Macaca mulatta) where we recorded the responses of peripheral mechanoreceptive afferents to lumps embedded at various depths in intermediates (rubbers) of varying compliance. The psychophysical results reveal that human lump detection is greatly degraded by both lump depth and decreased compliance of the intermediate. The neurophysiology results reveal that only the slowly adapting type 1 (SA1) afferents provide a clear spatial representation of lumps at all depths and that the representation is affected by lump size, depth, and compliance of the intermediate. The rapidly adapting afferents are considerably less sensitive to the lump. We defined eight neural response measures that we hypothesized could explain the psychophysical behavior, including peak firing rate, spatial spread of neural activity, and additional parameters derived from these measures. We find that peak firing rate encodes the depth of the lump, and the neural spatial spread of the SA1 response encodes for lump size but not lump shape. We also find that the perception of lump size may be affected by the compliance of the intermediate. The results show that lump detection is based on a spatial population code of the SA1 afferents, which is distorted by the depth of the lump and compliance of the tissue.


Assuntos
Mecanorreceptores/fisiologia , Percepção do Tato/fisiologia , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Humanos , Macaca mulatta , Psicofísica , Limiar Sensorial/fisiologia , Elastômeros de Silicone
8.
J Neurophysiol ; 111(6): 1286-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371296

RESUMO

Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.


Assuntos
Retroalimentação Fisiológica , Modelos Neurológicos , Destreza Motora , Periodicidade , Tato , Sinais (Psicologia) , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Masculino , Processos Estocásticos , Adulto Jovem
9.
Surg Endosc ; 28(7): 2145-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24519031

RESUMO

BACKGROUND: Robot-assisted surgery is widely adopted for many procedures but has not realized its full potential to date. Based on human motor control theories, the authors hypothesized that the dynamics of the master manipulators impose challenges on the motor system of the user and may impair performance and slow down learning. Although studies have shown that robotic outcomes are correlated with the case experience of the surgeon, the relative contribution of cognitive versus motor skill is unknown. This study quantified the effects of da Vinci Si master manipulator dynamics on movements of novice users and experienced surgeons and suggests possible implications for training and robot design. METHODS: In the reported study, six experienced robotic surgeons and ten novice nonmedical users performed movements under two conditions: teleoperation of a da Vinci Si Surgical system and freehand. A linear mixed model was applied to nine kinematic metrics (including endpoint error, movement time, peak speed, initial jerk, and deviation from a straight line) to assess the effects of teleoperation and expertise. To assess learning effects, t tests between the first and last movements of each type were used. RESULTS: All the users moved slower during teleoperation than during freehand movements (F(1,9343) = 345; p < 0.001). The experienced surgeons had smaller errors than the novices (F(1,14) = 36.8; p < 0.001). The straightness of movements depended on their direction (F(7,9343) = 117; p < 0.001). Learning effects were observed in all conditions. Novice users first learned the task and then the dynamics of the manipulator. CONCLUSIONS: The findings showed differences between the novices and the experienced surgeons for extremely simple point-to-point movements. The study demonstrated that manipulator dynamics affect user movements, suggesting that these dynamics could be improved in future robot designs. The authors showed the partial adaptation of novice users to the dynamics. Future studies are needed to evaluate whether it will be beneficial to include early training sessions dedicated to learning the dynamics of the manipulator.


Assuntos
Cirurgia Geral/educação , Destreza Motora , Robótica/educação , Competência Clínica , Retroalimentação , Humanos , Curva de Aprendizado , Modelos Lineares , Procedimentos Cirúrgicos Minimamente Invasivos , Cirurgia Assistida por Computador/instrumentação , Telemedicina
10.
IEEE Trans Haptics ; PP2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536688

RESUMO

Current Virtual Reality (VR) environments lack the haptic signals that humans experience during real-life interactions, such as the sensation of texture during lateral movement on a surface. Adding realistic haptic textures to VR environments requires a model that generalizes to variations of a user's interaction and to the wide variety of existing textures in the world. Current methodologies for haptic texture rendering exist, but they usually develop one model per texture, resulting in low scalability. We present a deep learning-based action-conditional model for haptic texture rendering and evaluate its perceptual performance in rendering realistic texture vibrations through a multi-part human user study. This model is unified over all materials and uses data from a vision-based tactile sensor (GelSight) to render the appropriate surface conditioned on the user's action in real-time. For rendering texture, we use a high-bandwidth vibrotactile transducer attached to a 3D Systems Touch device. The results of our user study shows that our learning-based method creates high-frequency texture renderings with comparable or better quality than state-of-the-art methods without the need to learn a separate model per texture. Furthermore, we show that the method is capable of rendering previously unseen textures using a single GelSight image of their surface.

11.
Acad Med ; 99(4S Suppl 1): S84-S88, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109654

RESUMO

ABSTRACT: Clinical touch is the cornerstone of the doctor-patient relationship and can impact patient experience and outcomes. In the current era, driven by an ever-increasing infusion of point-of-care technologies, physical exam skills have become undervalued. Moreover, touch and hands-on skills have been difficult to teach due to inaccurate assessments and difficulty with learning transfer through observation. In this article, the authors argue that haptics, the science of touch, provides a unique opportunity to explore new pathways to facilitate touch training. Furthermore, haptics can dramatically increase the density of touch-based assessments without increasing human rater burden-essential for realizing precision assessment. The science of haptics is reviewed, including the benefits of using haptics-informed language for objective structured clinical examinations. The authors describe how haptic devices and haptic language have and can be used to facilitate learning, communication, documentation and a much-needed reinvigoration of physical examination, and touch excellence at the point of care. The synergy of haptic devices, artificial intelligence, and virtual reality environments are discussed. The authors conclude with challenges of scaling haptic technology in medical education, such as cost and translational needs, and opportunities to achieve wider adoption of this transformative approach to precision education.


Assuntos
Tecnologia Háptica , Tato , Humanos , Inteligência Artificial , Relações Médico-Paciente , Interface Usuário-Computador
12.
Soft Robot ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683643

RESUMO

Abstract Active control of the shape of soft robots is challenging. Despite having an infinite number of passive degrees of freedom (DOFs), soft robots typically only have a few actively controllable DOFs, limited by the number of degrees of actuation (DOAs). The complexity of actuators restricts the number of DOAs that can be incorporated into soft robots. Active shape control is further complicated by the buckling of soft robots under compressive forces; this is particularly challenging for compliant continuum robots due to their long aspect ratios. In this study, we show how variable stiffness enables shape control of soft robots by addressing these challenges. Dynamically changing the stiffness of sections along a compliant continuum robot selectively "activates" discrete joints. By changing which joints are activated, the output of a single actuator can be reconfigured to actively control many different joints, thus decoupling the number of controllable DOFs from the number of DOAs. We demonstrate embedded positive pressure layer jamming as a simple method for stiffness change in inflated beam robots, its compatibility with growing robots, and its use as an "activating" technology. We experimentally characterize the stiffness change in a growing inflated beam robot and present finite element models that serve as guides for robot design and fabrication. We fabricate a multisegment everting inflated beam robot and demonstrate how stiffness change is compatible with growth through tip eversion, enables an increase in workspace, and achieves new actuation patterns not possible without stiffening.

13.
IEEE Trans Biomed Eng ; 71(1): 26-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37384470

RESUMO

OBJECTIVE: This article presents two haptic guidance systems designed to help a clinician keep an ultrasound probe steady when completing ultrasound-assisted needle insertion tasks. These procedures demand spatial reasoning and hand-eye coordination because the clinician must align a needle with the ultrasound probe and extrapolate the needle trajectory using only a 2D ultrasound image. Past research has shown that visual guidance helps the clinician align the needle, but does not help the clinician keep the ultrasound probe steady, sometimes resulting in a failed procedure. METHODS: We created two separate haptic guidance systems to provide feedback if the user tilts the ultrasound probe away from the desired setpoint using (1) vibrotactile stimulation provided by a voice coil motor or (2) distributed tactile pressure provided by a pneumatic mechanism. RESULTS: Both systems significantly reduced probe deviation and correction time to errors during a needle insertion task. We also tested the two feedback systems in a more clinically relevant setup and showed that the perceptibility of the feedback was not affected by the addition of a sterile bag placed over the actuators and gloves worn by the user. CONCLUSION: These studies show that both types of haptic feedback are promising for helping the user keep the ultrasound probe steady during ultrasound-assisted needle insertion tasks. Survey results indicated that users preferred the pneumatic system over the vibrotactile system. SIGNIFICANCE: Haptic feedback may improve user performance in ultrasound-based needle-insertion procedures and shows promise in training for needle-insertion tasks and other medical procedures where guidance is required.


Assuntos
Tecnologia Háptica , Agulhas , Retroalimentação , Ultrassonografia , Tato/fisiologia
14.
IEEE Trans Haptics ; PP2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349838

RESUMO

Wearable haptic devices on the forearm can relay information from virtual agents, robots, and other humans while leaving the hands free. We introduce and test a new wearable haptic device that uses soft actuators to provide normal and shear force to the skin of the forearm. A rigid housing and gear motor are used to control the direction of the shear force. A 6-axis force/torque sensor, distance sensor, and pressure sensors are integrated to quantify how the soft tactor interacts with the skin. When worn by participants, the device delivered consistent shear forces of up to 0.64 N and normal forces of up to 0.56 N over distances as large as 14.3 mm. To understand cue saliency, we conducted a user study asking participants to identify linear shear directional cues in a 4-direction task and an 8-direction task with different cue speeds, travel distances, and contact patterns. Participants identified cues with longer travel distances best, with an 85.1% accuracy in the 4-direction task, and a 43.5% accuracy in the 8-direction task. Participants had a directional bias, with a preferential response in the axis towards and away from the wrist bone.

15.
ArXiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38903739

RESUMO

A host of medical conditions, including amputations, diabetes, stroke, and genetic disease, result in loss of touch sensation. Because most types of sensory loss have no pharmacological treatment or rehabilitative therapy, we propose a haptic sensory prosthesis that provides substitutive feedback. The wrist and forearm are compelling locations for feedback due to available skin area and not occluding the hands, but have reduced mechanoreceptor density compared to the fingertips. Focusing on localized pressure as the feedback modality, we hypothesize that we can improve on prior devices by invoking a wider range of stimulus intensity using multiple points of pressure to evoke spatial summation, which is the cumulative perceptual experience from multiple points of stimuli. We conducted a preliminary perceptual test to investigate this idea and found that just noticeable difference is reduced with two points of pressure compared to one, motivating future work using spatial summation in sensory prostheses.

16.
IEEE Trans Haptics ; PP2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315586

RESUMO

Tactile perception plays an important role in activities of daily living, and it can be impaired in individuals with certain medical conditions. The most common tools used to assess tactile sensation, the Semmes-Weinstein monofilaments and the 128 Hz tuning fork, have poor repeatability and resolution. Long term, we aim to provide a repeatable, high-resolution testing platform that can be used to assess vibrotactile perception through smartphones without the need for an experimenter to be present to conduct the test. We present a smartphone-based vibration perception measurement platform and compare its performance to measurements from standard monofilament and tuning fork tests. We conducted a user study with 36 healthy adults in which we tested each tool on the hand, wrist, and foot, to assess how well our smartphone-based vibration perception thresholds (VPTs) detect known trends obtained from standard tests. The smartphone platform detected statistically significant changes in VPT between the index finger and foot and also between the feet of younger adults and older adults. Our smartphone-based VPT had a moderate correlation to tuning fork-based VPT. Our overarching objective is to develop an accessible smartphone-based platform that can eventually be used to measure disease progression and regression.

17.
IEEE Trans Haptics ; PP2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194379

RESUMO

Teleoperated robotic systems have introduced more intuitive control for minimally invasive surgery, but the optimal method for training remains unknown. Recent motor learning studies have demonstrated that exaggeration of errors helps trainees learn to perform tasks with greater speed and accuracy. We hypothesized that training in a force field that pushes the user away from a desired path would improve their performance on a virtual reality ring-on-wire task. Thirty-eight surgical novices trained under a no-force, guidance, or error-amplifying force field over five days. Completion time, translational and rotational path error, and combined errortime were evaluated under no force field on the final day. The groups significantly differed in combined error-time, with the guidance group performing the worst. Error-amplifying field participants did not plateau in their performance during training, suggesting that learning was still ongoing. Guidance field participants had the worst performance on the final day, confirming the guidance hypothesis. Observed trends also suggested that participants who had high initial path error benefited more from guidance. Error-amplifying and error-reducing haptic training for robot-assisted telesurgery benefits trainees of different abilities differently, with our results indicating that participants with high initial combined error-time benefited more from guidance and error-amplifying force field training.

18.
Soft Robot ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38717834

RESUMO

Soft pneumatic actuators are used to steer soft growing "vine" robots while being flexible enough to undergo the tip eversion required for growth. In this study, we compared the performance of three types of pneumatic actuators in terms of their ability to perform eversion, quasi-static bending, dynamic motion, and force output: the pouch motor, the cylindrical pneumatic artificial muscle (cPAM), and the fabric pneumatic artificial muscle (fPAM). The pouch motor is advantageous for prototyping owing to its simple manufacturing process. The cPAM exhibits superior bending behavior and produces the highest forces, whereas the fPAM actuates fastest and everts at the lowest pressure. We evaluated a range of dimensions for each actuator type. Larger actuators can produce more significant deformations and forces, but smaller actuators inflate faster and can evert at a lower pressure. Because vine robots are lightweight, the effect of gravity on the functionality of different actuators is minimal. We developed a new analytical model that predicts the pressure-to-bending behavior of vine robot actuators. Using the actuator results, we designed and demonstrated a 4.8 m long vine robot equipped with highly maneuverable 60 × 60 mm cPAMs in a three-dimensional obstacle course. The vine robot was able to move around sharp turns, travel through a passage smaller than its diameter, and lift itself against gravity.

19.
J Neurophysiol ; 110(7): 1611-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23843434

RESUMO

Impedance control enables humans to effectively interact with their environment during postural and movement tasks, adjusting the mechanical behavior of their limbs to account for instability. Previous work has shown that people are able to selectively modulate the end-point stiffness of their arms, adjusting for varying directions of environmental disturbances. Behavioral studies also suggest that separate controllers are used for impedance modulation versus joint torque coordination. Here we tested whether people with cerebellar damage have deficits in impedance control. It is known that these individuals have poor motor coordination, which has typically been attributed to deficits in joint torque control. Subjects performed a static postural maintenance task with two different types of directional force perturbations. On average, patients with cerebellar ataxia modified stiffness differentially for the two perturbation conditions, although significantly less than age-matched control subjects. Thus cerebellar damage may impair the ability to modulate arm impedance. Surprisingly, the patients' intact ability to generally alter their limb stiffness during the postural task (albeit less than age-matched control subjects) improved their movement performance in a subsequent tracing task. The transfer of stiffness control from the static to the movement task may be a strategy that can be used by patients to compensate for their motor deficits.


Assuntos
Braço/fisiopatologia , Ataxia Cerebelar/fisiopatologia , Movimento , Equilíbrio Postural , Idoso , Braço/inervação , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Articulações/inervação , Articulações/fisiopatologia , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular , Torque
20.
J Neurophysiol ; 109(4): 1107-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175807

RESUMO

Because damage to the cerebellum results in characteristic movement incoordination known as "ataxia," it has been hypothesized that it is involved in estimation of limb dynamics that occur during movement. However, cerebellar function may extend beyond movement to force control in general, with or without movement. Here we tested whether the cerebellum is involved in controlling force separate from estimating limb dynamics and whether ataxia could result from a deficit in force control. We studied patients with cerebellar ataxia controlling their arm force isometrically; in this condition arm dynamics are absent and there is no need for (or effect from an impairment in) estimations of limb dynamics. Subjects were required to control their force magnitude, direction, or both. Cerebellar patients were able to match force magnitude or direction similarly to control subjects. Furthermore, when controlling force magnitude, they intuitively chose directions (not specified) that required minimal effort at the joint level--this ability was also similar to control subjects. In contrast, cerebellar patients performed significantly worse than control subjects when asked to match both force magnitude and direction. This was surprising, since they did not exhibit significant impairment in doing either in isolation. These results show that cerebellum-dependent computations are not limited to estimations of body dynamics needed for active movement. Deficits occur even in isometric conditions, but apparently only when multiple degrees of freedom must be controlled simultaneously. Thus a fundamental cerebellar operation may be combining/coordinating degrees of freedom across many kinds of movements and behaviors.


Assuntos
Ataxia Cerebelar/fisiopatologia , Contração Isométrica/fisiologia , Adulto , Idoso , Braço/inervação , Braço/fisiopatologia , Estudos de Casos e Controles , Cerebelo/fisiopatologia , Feminino , Humanos , Articulações/inervação , Articulações/fisiologia , Masculino , Pessoa de Meia-Idade , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA