Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Med Genet C Semin Med Genet ; 169(3): 224-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26235846

RESUMO

Disorders resulting from 5p deletions (5p-) were first recognized by Lejeune et al. in 1963 [Lejeune et al. (1963); C R Hebd Seances Acad Sci 257:3098-3102]. 5p- is caused by partial or total deletion of the short arm of chromosome 5. The most recognizable phenotype is characterized by a high-pitched cry, dysmorphic features, poor growth, and developmental delay. This report reviews 5p- disorders and their molecular basis. Hemizygosity for genes located within this region have been implicated in contributing to the phenotype. A review of the genes on 5p which may be dosage sensitive is summarized. Because of the growing knowledge of these specific genes, future directions to explore potential targeted therapies for individuals with 5p- are discussed. © 2015 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/terapia , Deficiências do Desenvolvimento/diagnóstico , Humanos , Fenótipo
2.
J Genet Couns ; 24(5): 752-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25540895

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans. There have been few studies assessing the impact of this condition on the family and no previous studies conducted on unaffected siblings of children with 22q11DS. The goal of this study was to determine the frequency, method, and content of information being communicated by parents to unaffected siblings about the condition and to assess unaffected siblings' knowledge of 22q11DS and perceptions of the impact of the condition on their affected sibling and themselves. Families were recruited from several 22q11DS educational and support organizations and asked to complete a single anonymous online survey. Families were eligible to participate if they had one child with 22q11DS and at least one unaffected child between the ages of 12 and 17. Survey questions were developed based on previous literature and authors' expertise with individuals with 22q11DS. Responses to quantitative and qualitative questions were analyzed to calculate frequencies and proportions and to extract themes, respectively. A total of 25 families (defined as a unit of at least one parent, one affected child, and at least one unaffected child) participated in the study. Parents shared genetic information less often as compared to behavioral and medical information. Siblings of children with 22q11DS had both positive and negative experiences in having a brother or sister with this condition. Genetic counselors can use the results of this study to develop anticipatory guidance for parents of children with 22q11DS in talking with their unaffected children about the condition.


Assuntos
Síndrome de DiGeorge/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Relações Pais-Filho , Pais/psicologia , Irmãos/psicologia , Adaptação Psicológica , Adolescente , Síndrome de DiGeorge/diagnóstico , Feminino , Humanos , Masculino , Relações entre Irmãos , Inquéritos e Questionários
3.
BMC Genomics ; 13: 469, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967170

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. RESULTS: More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago. CONCLUSIONS: The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application for mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Evolução Molecular , Variação Genética , Genoma de Planta/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
4.
Theor Appl Genet ; 125(8): 1603-18, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22875176

RESUMO

The first single-nucleotide polymorphism (SNP) maps for watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] were constructed and compared. Three populations were developed from crosses between two elite cultivars, Klondike Black Seeded × New Hampshire Midget (KBS × NHM), an elite cultivar and wild egusi accession, Strain II × PI 560023 (SII × Egusi) and an elite cultivar and a wild citron accession, ZWRM50 × PI 244019 (ZWRM × Citroides). The SII × Egusi and ZWRM × Citroides F(2) populations consisted of 187 and 182 individuals respectively while the KBS × NHM recombinant inbred line (RIL) population consisted of 164 lines. The length of the genetic maps were 1,438, 1,514 and 1,144 cM with average marker distances of 3.8, 4.2, and 3.4 cM for the KBS × NHM, SII × Egusi and ZWRM × Citroides populations, respectively. Shared markers were used to align the three maps so that the linkage groups (LGs) represented the 11 chromosomes of the species. Marker segregation distortion were observed in all three populations, but was highest (12.7 %) in the ZWRM × Citroides population, where Citroides alleles were favored. The three maps were used to construct a consensus map containing 378 SNP markers with an average distance of 5.1 cM between markers. Phenotypic data was collected for fruit weight (FWT), fruit length (FL), fruit width (FWD), fruit shape index (FSI), rind thickness (RTH) and Brix (BRX) and analyzed for quantitative trait loci (QTL) associated with these traits. A total of 40 QTL were identified in the three populations, including major QTL for fruit size and shape that were stable across genetic backgrounds and environments. The present study reports the first SNP maps for Citrullus and the first map constructed using two elite parents. We also report the first stable QTL associated with fruit size and shape in Citrullus lanatus. These maps, QTL and SNPs should be useful for the watermelon community and represent a significant step towards the potential use of molecular tools in watermelon breeding.


Assuntos
Mapeamento Cromossômico/métodos , Citrullus/genética , Frutas/anatomia & histologia , Frutas/genética , Genética Populacional , Genoma de Planta/genética , Tamanho do Órgão/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável
5.
BMC Plant Biol ; 10: 48, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20298609

RESUMO

BACKGROUND: Linkage maps are useful tools for examining both the genetic architecture of quantitative traits and the evolution of reproductive incompatibilities. We describe the generation of two genetic maps using reciprocal interspecific backcross 1 (BC1) mapping populations from crosses between Iris brevicaulis and Iris fulva. These maps were constructed using expressed sequence tag (EST)- derived codominant microsatellite markers. Such a codominant marker system allowed for the ability to link the two reciprocal maps, and compare patterns of transmission ratio distortion observed between the two. RESULTS: Linkage mapping resulted in markers that coalesced into 21 linkage groups for each of the reciprocal backcross maps, presumably corresponding to the 21 haploid chromosomes of I. brevicaulis and I. fulva. The composite map was 1190.0-cM long, spanned 81% of the I. brevicaulis and I. fulva genomes, and had a mean density of 4.5 cM per locus. Transmission ratio distortion (TRD) was observed in 138 (48.5%) loci distributed in 19 of the 21 LGs in BCIB, BCIF, or both BC1 mapping populations. Of the distorted markers identified, I. fulva alleles were detected at consistently higher-than-expected frequencies in both mapping populations. CONCLUSIONS: The observation that I. fulva alleles are overrepresented in both mapping populations suggests that I. fulva alleles are favored to introgress into I. brevicaulis genetic backgrounds, while I. brevicaulis alleles would tend to be prevented from introgressing into I. fulva. These data are consistent with the previously observed patterns of introgression in natural hybrid zones, where I. fulva alleles have been consistently shown to introgress across species boundaries.


Assuntos
Cruzamentos Genéticos , Endogamia , Gênero Iris/genética , Alelos , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Loci Gênicos/genética , Genótipo , Hibridização Genética , Louisiana , Repetições de Microssatélites/genética , Polimorfismo Genético , Especificidade da Espécie
6.
BMC Plant Biol ; 9: 72, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19515254

RESUMO

BACKGROUND: Limited DNA sequence and DNA marker resources have been developed for Iris (Iridaceae), a monocot genus of 200-300 species in the Asparagales, several of which are horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally important cultivars. RESULTS: Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851 singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I. brevicaulis x I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms among 39 ecotypes or cultivars of seven species - 100% amplified alleles from wild collected ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42-52% amplified alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I. sibirica). Ecotypes and cultivars were genetically diverse - the number of alleles/locus ranged from two to 18 and mean heterozygosity was 0.76. CONCLUSION: Nearly 400 ortholog-specific EST-SSR markers were developed for comparative genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes and cultivars, and have broad utility for genotyping applications within the genus.


Assuntos
Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Gênero Iris/genética , Repetições de Microssatélites , DNA de Plantas/genética , Biblioteca Gênica , Marcadores Genéticos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA