Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203519

RESUMO

In a previous study, we successfully coated hydroxyapatite (HAp) onto titanium (Ti) plates using the erbium-doped yttrium aluminum garnet pulsed-laser deposition (Er:YAG-PLD) method. In this study, we performed further experiments to validate the in vitro osteogenic properties, macrophage polarization, and in vivo osseointegration activity of HAp-coated Ti (HAp-Ti) plates and screws. Briefly, we coated a HAp film onto the surfaces of Ti plates and screws via Er:YAG-PLD. The surface morphological, elemental, and crystallographic analyses confirmed the successful surface coating. The macrophage polarization and osteogenic induction were evaluated in macrophages and rat bone marrow mesenchymal stem cells, and the in vivo osteogenic properties were studied. The results showed that needle-shaped nano-HAp promoted the early expression of osteogenic and immunogenic genes in the macrophages and induced excellent M2 polarization properties. The calcium deposition and osteocalcin production were significantly higher in the HAp-Ti than in the uncoated Ti. The implantation into rat femurs revealed that the HAp-coated materials had superior osteoinductive and osseointegration activities compared with the Ti, as assessed by microcomputed tomography and histology. Thus, HAp film on sandblasted Ti plates and screws via Er:YAG-PLD enhances hard-tissue differentiation, macrophage polarization, and new bone formation in tissues surrounding implants both in vitro and in vivo.


Assuntos
Osteogênese , Titânio , Animais , Ratos , Titânio/farmacologia , Microtomografia por Raio-X , Lasers , Durapatita/farmacologia , Macrófagos
2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499747

RESUMO

Pure titanium is used in dental implants owing to its excellent biocompatibility and physical properties. However, the aging of the material during storage is detrimental to the long-term stability of the implant after implantation. Therefore, in this study, we attempted to improve the surface properties and circumvent the negative effects of material aging on titanium implants by using a portable handheld nonthermal plasma device capable of piezoelectric direct discharge to treat pure titanium discs with nitrogen gas. We evaluated the osteogenic properties of the treated samples by surface morphology and elemental analyses, as well as in vitro and in vivo experiments. The results showed that nonthermal atmospheric-pressure nitrogen plasma can improve the hydrophilicity of pure titanium without damaging its surface morphology while introducing nitrogen-containing functional groups, thereby promoting cell attachment, proliferation, and osseointegration to some extent. Therefore, nitrogen plasma treatment may be a promising method for the rapid surface treatment of titanium implants.


Assuntos
Implantes Dentários , Gases em Plasma , Titânio , Nitrogênio , Osseointegração , Propriedades de Superfície
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269557

RESUMO

Standard zirconia implants used in restoration still present problems related to inertness and long-term stability. Various physicochemical approaches have been used to modify the implant surfaces to improve early and late bone-to-implant integration; however, no ideal surface modification has been reported. This study used pulsed laser deposition to deposit a fluorinated hydroxyapatite (FHA) film on a zirconia implant to create a biologically active surface. The film prepared was uniform, dense, and crack-free, and exhibited granular surface droplets; it also presented excellent mechanical strength and favorable biological behavior. The FHA-coated implant was implanted on the femur of Sprague-Dawley rats, and various tests and analyses were performed. Results show that the in vitro initial cell activity on the FHA-coated samples was enhanced. In addition, higher alkaline phosphatase activity and cell mineralization were detected in cells cultured on the FHA-coated groups. Further, the newly formed bone volume of the FHA-coated group was higher than that of the bare micro-adjusted composite nano-zirconia (NANOZR) group. Therefore, the FHA film facilitated osseointegration and may improve the long-term survival rates of dental implants, and could become part of a new treatment technology for implant surfaces, promoting further optimization of NANOZR implant materials.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Durapatita/química , Fêmur/cirurgia , Flúor/química , Osseointegração/efeitos dos fármacos , Zircônio/administração & dosagem , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Implantes Dentários , Fêmur/citologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Lasers , Masculino , Teste de Materiais , Nanoestruturas , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Zircônio/química , Zircônio/farmacologia
4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054795

RESUMO

Polyetheretherketone (PEEK) is a potential substitute for conventional metallic biomedical implants owing to its superior mechanical and chemical properties, as well as biocompatibility. However, its inherent bio-inertness and poor osseointegration limit its use in clinical applications. Herein, thin titanium films were deposited on the PEEK substrate by plasma sputtering, and porous nanonetwork structures were incorporated on the PEEK surface by alkali treatment (PEEK-TNS). Changes in the physical and chemical characteristics of the PEEK surface were analyzed to establish the interactions with cell behaviors. The osteoimmunomodulatory properties were evaluated using macrophage cells and osteoblast lineage cells. The functionalized nanostructured surface of PEEK-TNS effectively promoted initial cell adhesion and proliferation, suppressed inflammatory responses, and induced macrophages to anti-inflammatory M2 polarization. Compared with PEEK, PEEK-TNS provided a more beneficial osteoimmune environment, including increased levels of osteogenic, angiogenic, and fibrogenic gene expression, and balanced osteoclast activities. Furthermore, the crosstalk between macrophages and osteoblast cells showed that PEEK-TNS could provide favorable osteoimmunodulatory environment for bone regeneration. PEEK-TNS exhibited high osteogenic activity, as indicated by alkaline phosphatase activity, osteogenic factor production, and the osteogenesis/osteoclastogenesis-related gene expression of osteoblasts. The study establishes that the fabrication of titanate nanonetwork structures on PEEK surfaces could extract an adequate immune response and favorable osteogenesis for functional bone regeneration. Furthermore, it indicates the potential of PEEK-TNS in implant applications.


Assuntos
Benzofenonas/farmacologia , Fatores Imunológicos/farmacologia , Nanopartículas/química , Osteogênese , Polímeros/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Células RAW 264.7 , Propriedades de Superfície
5.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299241

RESUMO

In this paper, we suggest that the atmospheric pressure plasma treatment of pure titanium metal may be useful for improving the ability of rat bone marrow cells (RBMCs) to induce hard tissue differentiation. Previous studies have reported that the use of argon gas induces a higher degree of hard tissue formation. Therefore, this study compares the effects of plasma treatment with argon gas on the initial adhesion ability and hard tissue differentiation-inducing ability of RBMCs. A commercially available titanium metal plate was used as the experimental material. A plate polished using water-resistant abrasive paper #1500 was used as the control, and a plate irradiated with argon mixed with atmospheric pressure plasma was used as the experimental plate. No structural change was observed on the surface of the titanium metal plate in the scanning electron microscopy results, and no change in the surface roughness was observed via scanning probe microscopy. X-ray photoelectron spectroscopy showed a decrease in the carbon peak and the formation of hydroxide in the experimental group. In the distilled water drop test, a significant decrease in the contact angle was observed for the experimental group, and the results indicated superhydrophilicity. Furthermore, the bovine serum albumin adsorption, initial adhesion of RBMCs, alkaline phosphatase activity, calcium deposition, and genetic marker expression of rat bone marrow cells were higher in the experimental group than those in the control group at all time points. Rat distal femur model are used as in vivo model. Additionally, microcomputed tomography analysis showed significantly higher results for the experimental group, indicating a large amount of the formed hard tissue. Histopathological evaluation also confirmed the presence of a prominent newly formed bone seen in the images of the experimental group. These results indicate that the atmospheric pressure plasma treatment with argon gas imparts superhydrophilicity, without changing the properties of the pure titanium plate surface. It was also clarified that it affects the initial adhesion of bone marrow cells and the induction of hard tissue differentiation.


Assuntos
Argônio/farmacologia , Osseointegração/efeitos dos fármacos , Gases em Plasma/química , Animais , Argônio/química , Pressão Atmosférica , Células da Medula Óssea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Varredura/métodos , Osseointegração/fisiologia , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica/métodos , Gases em Plasma/farmacologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-X/métodos
6.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050494

RESUMO

Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague-Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties.


Assuntos
Álcalis/química , Álcalis/farmacologia , Óxido de Alumínio/química , Nanocompostos/química , Plasma , Zircônio/química , Albuminas/química , Albuminas/metabolismo , Álcalis/farmacocinética , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Nanocompostos/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Plasma/química , Análise Espectral
7.
Int J Mol Sci ; 21(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429471

RESUMO

Alkali-treated titanate layer with nanonetwork structures (TNS) is a promising surface for improving osseointegration capacity in implants. Nevertheless, there is a risk of device failure as a result of insufficient resistance to biofilm contamination. This study tested whether treatment using a handheld non-thermal plasma device could efficiently eliminate biofilm contamination without destroying the surface nanostructure while re-establishing a surface that promoted new bone generation. TNS specimens were treated by a piezoelectric direct discharge (PDD) plasma generator. The effect of decontamination was performed utilizing Staphylococcus aureus. The evaluation of initial cell attachment with adhesion images, alkaline phosphatase activity, extracellular matrix mineralization, and expression of genes related to osteogenesis was performed using rat bone marrow mesenchymal stem cells, and the bone response were evaluated in vivo using a rat femur model. Nanotopography and surface roughness did not significantly differ before and after plasma treatments. Cell and bone formation activity were improved by TNS plasma treatment. Furthermore, plasma treatment effectively eliminated biofilm contamination from the surface. These results suggested that this plasma treatment may be a promising approach for the treatment of nanomaterials immediately before implantation and a therapeutic strategy for peri-implantitis.


Assuntos
Descontaminação , Nanoestruturas/química , Osseointegração/efeitos dos fármacos , Gases em Plasma/farmacologia , Titânio/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Imageamento Tridimensional , Espaço Intracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Próteses e Implantes , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Microtomografia por Raio-X
8.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795108

RESUMO

This study describes the production of a new material composed of pure titanium (Ti) metal with a crystallized nanostructure and investigated whether heat treatment and ultraviolet (UV) irradiation improved its biocompatibility and antibacterial properties. We compared the performance of UV-irradiated and non-irradiated Ti nanosheets (TNS) formed by dark alkaline treatment and heating at 600 °C with that of untreated pure Ti nanostructure (positive control). In vitro and in vivo experiments to assess biocompatibility and effects on cell behavior were performed using human umbilical vein endothelial cells and rat bone marrow cells. The material surface was characterized by X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the irradiated material were evaluated using Staphylococcus aureus, a common pathogenic bacterium. The UV-irradiated TNS exhibited high angiogenic capacity and promoted cell adherence and differentiation relative to the control. Further, surface analysis via XPS revealed a lower C peak for the UV-treated material, indicating a reduced amount of dirt on the material surface. Moreover, UV irradiation decreased the viability of S. aureus on the material surface by stimulating reactive oxygen species production. The biocompatibility and antibacterial properties of the TNS were improved by UV irradiation. Thus, TNS may serve as a useful material for fabrication of dental implants.


Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Nanopartículas/química , Titânio/química , Raios Ultravioleta , Animais , Antibacterianos/efeitos adversos , Antibacterianos/efeitos da radiação , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/efeitos da radiação , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos
9.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781372

RESUMO

Ingredients and surface modification methods are being continually developed to improve osseointegration of dental implants and reduce healing times. In this study, we demonstrate in vitro that, by applying concentrated alkali treatment to NANOZR with strong bending strength and fracture toughness, a significant improvement in the bone differentiation of rat bone marrow cells can be achieved. We investigated the influence of materials modified with this treatment in vivo, on implanted surrounding tissues using polychrome sequential fluorescent labeling and micro-computer tomography scanning. NANOZR implant screws in the alkali-treated group and the untreated group were evaluated after implantation in the femur of Sprague⁻Dawley male rats, indicating that the amount of new bone in the alkali-modified NANOZR was higher than that of unmodified NANOZR. Alkali-modified NANOZR implants proved to be useful for the creation of new implant materials.


Assuntos
Álcalis/farmacologia , Implantes Experimentais , Nanocompostos/química , Osseointegração/efeitos dos fármacos , Zircônio/química , Animais , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Ratos , Propriedades de Superfície , Microtomografia por Raio-X
10.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841636

RESUMO

Alkali-treated titanium (Ti) with a porous, homogeneous, and uniform nanonetwork structure (TNS) that enables establishment of a more rapid and firmer osteointegration than titanium has recently been reported. However, the mechanisms underlying the enhanced osteogenic activity on TNS remains to be elucidated. This study aimed to evaluate the surface physicochemical properties of Ti and TNS, and investigate osteoinduction and osteointegration in vivo. Surface characteristics were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), and X-ray photoelectron spectrometry (XPS), and the surface electrostatic force of TNS was determined using solid zeta potential. This study also evaluated the adsorption of bovine serum albumin (BSA) and human plasma fibronectin (HFN) on Ti and TNS surfaces using quartz crystal microbalance (QCM) sensors, and apatite formation on Ti and TNS surfaces was examined using a simulated body fluid (SBF) test. Compared with Ti, the newly developed TNS enhanced BSA and HFN absorbance capacity and promoted apatite formation. Furthermore, TNS held less negative charge than Ti. Notably, sequential fluorescence labeling and microcomputed tomography assessment indicated that TNS screws implanted into rat femurs exhibited remarkably enhanced osteointegration compared with Ti screws. These results indicate that alkali-treated titanium implant with a nanonetwork structure has considerable potential for future clinical applications in dentistry and orthopedics.


Assuntos
Prótese Ancorada no Osso , Osseointegração , Titânio/química , Álcalis/química , Animais , Masculino , Nanoestruturas/química , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
11.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642566

RESUMO

To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF) pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA). Coating was confirmed by scanning electron microscopy (SEM) and scanning probe microscopy (SPM), while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.


Assuntos
Interface Osso-Implante , Materiais Revestidos Biocompatíveis/química , Hidroxiapatitas/química , Osteogênese , Titânio/química , Animais , Cálcio/metabolismo , Células Cultivadas , Materiais Revestidos Biocompatíveis/efeitos adversos , Hidroxiapatitas/efeitos adversos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osseointegração , Osteocalcina/genética , Osteocalcina/metabolismo , Ratos , Ratos Sprague-Dawley , Titânio/efeitos adversos
12.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695118

RESUMO

The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.


Assuntos
Amelogenina/química , Materiais Revestidos Biocompatíveis/química , Titânio/química , Amelogenina/metabolismo , Animais , Células da Medula Óssea , Regeneração Óssea , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiologia , Adesão Celular , Linhagem Celular , Células Cultivadas , Implantes Dentários , Materiais Dentários , Microscopia Eletrônica de Varredura , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
13.
Int J Mol Sci ; 18(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383491

RESUMO

In recent years, zirconia has been a recognized implant material in clinical dentistry. In the present study, we investigated the performance of an alkali-modified ceria-stabilized tetragonal ZrO2 polycrystalline ceramic-based nanostructured zirconia/alumina composite (NANOZR) implant by assessing surface morphology and composition, wettability, bovine serum albumin adsorption rate, rat bone marrow (RBM) cell attachment, and capacity for inducing bone differentiation. NANOZR surfaces without and with alkali treatment served as the control and test groups, respectively. RBM cells were seeded in a microplate with the implant and cultured in osteogenic differentiation medium, and their differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, osteocalcin (OCN) production, calcium deposition, and osteogenic gene expression. The alkali-treated NANOZR surface increased ALP activity, OCN production, calcium deposition, and osteogenesis-related gene expression in attached RBM cells. These data suggest that alkali treatment enhances the osteogenesis-inducing capacity of NANOZR implants and may therefore improve their biointegration into alveolar bone.


Assuntos
Óxido de Alumínio/farmacologia , Células da Medula Óssea/citologia , Materiais Dentários/farmacologia , Osteogênese/efeitos dos fármacos , Zircônio/farmacologia , Óxido de Alumínio/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Implantes Dentários , Materiais Dentários/química , Nanopartículas/química , Ratos , Propriedades de Superfície , Molhabilidade , Zircônio/química
14.
Int J Mol Sci ; 18(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925952

RESUMO

We would like to submit the following correction to the published paper [1].[...].

15.
Int J Mol Sci ; 18(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481253

RESUMO

This study developed a drug-loadable hydrogel system with high plasticity and favorable biological properties to enhance oral bone tissue regeneration. Hydrogels of different calcium alginate concentrations were prepared. Their swelling ratio, degradation time, and bovine serum albumin (BSA) release rate were measured. Human periodontal ligament cells (hPDLCs) and bone marrow stromal cells (BMSCs) were cultured with both calcium alginate hydrogels and polylactic acid (PLA), and then we examined the proliferation of cells. Inflammatory-related factor gene expressions of hPDLCs and osteogenesis-related gene expressions of BMSCs were observed. Materials were implanted into the subcutaneous tissue of rabbits to determine the biosecurity properties of the materials. The materials were also implanted in mandibular bone defects and then scanned using micro-CT. The calcium alginate hydrogels caused less inflammation than the PLA. The number of mineralized nodules and the expression of osteoblast-related genes were significantly higher in the hydrogel group compared with the control group. When the materials were implanted in subcutaneous tissue, materials showed favorable biocompatibility. The calcium alginate hydrogels had superior osteoinductive bone ability to the PLA. The drug-loadable calcium alginate hydrogel system is a potential bone defect reparation material for clinical dental application.


Assuntos
Alginatos/efeitos adversos , Regeneração Óssea , Hidrogéis/efeitos adversos , Mandíbula/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/efeitos adversos , Alginatos/química , Animais , Células Cultivadas , Feminino , Ácido Glucurônico/efeitos adversos , Ácido Glucurônico/química , Ácidos Hexurônicos/efeitos adversos , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Masculino , Mandíbula/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Ligamento Periodontal/citologia , Coelhos , Alicerces Teciduais/química
16.
J Prosthodont Res ; 68(1): 132-138, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37316261

RESUMO

PURPOSE: The purpose of this study is to investigate the effects of denture adhesives on masticatory performance via a 10-center, parallel, randomized, controlled trial of complete denture wearers in Japan. METHODS: The trial was conducted between September 2013 and October 2016. The inclusion criteria were complete edentulism, willingness to undergo new complete denture treatment, and willingness to return for recall treatment. The exclusion criteria were age 90 years or older, presence of severe systemic illness, inability to understand the questionnaires, wearing metal base complete dentures, denture adhesive user, wearing prosthetics for maxillofacial defects, wearing complete dentures with tissue conditioners, and severe xerostomia. Randomization of the powder-type denture adhesive (powder), cream-type denture adhesive (cream), and control (saline) groups was performed using a sealed envelope system. Masticatory performance was measured using color-changeable chewing gum. Intervention blinding was not feasible. RESULTS: Sixty-seven control, 69 powder, and 64 cream participants are analyzed using the intention-to-treat principle. The participants in all groups show significantly improved masticatory performance at post-intervention (paired t-test with Bonferroni correction P < 0.0001). However, no significant difference in masticatory performance is detected among the three groups (one-way analysis of variance). A significant negative correlation between pre- and post-changes in masticatory performance and intraoral condition scores is observed (Pearson's correlation coefficient, P < 0.0001). CONCLUSIONS: Although denture adhesives improved the masticatory performance of complete denture wearers, their clinical effects are comparable to those of saline solution. The use of denture adhesives is more effective in complete denture wearers with unsatisfactory intraoral conditions.


Assuntos
Boca Edêntula , Perda de Dente , Humanos , Idoso de 80 Anos ou mais , Pós , Prótese Total , Goma de Mascar , Mastigação
17.
J Prosthodont Res ; 67(4): 548-555, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36740264

RESUMO

PURPOSE: This study aimed to determine the effects of denture adhesives on denture retention and occlusal force in complete denture wearers in a multicenter, randomized, parallel-group controlled trial. METHODS: Two hundred edentulous patients wearing complete dentures were allocated to three groups: powder-type denture adhesive, cream-type denture adhesive, and control (saline solution). Denture adhesives and saline solution were applied to the dentures for 4 days. The retentive force of the dentures and occlusal force were measured using a force transducer occlusal force meter at baseline and after 4 days of intervention. In addition to between-group comparisons, subgroup analyses of denture retention and occlusal force were performed based on the level of difficulty of the edentulism treatment. The levels were ranked as I (easy), II, III, and IV (difficult). RESULTS: Cream-type denture adhesives significantly improved the retentive force of the dentures (P<0.01) and occlusal force (P<0.05), with no significant differences between baseline and post-intervention forces in the powder-type denture adhesive and control groups. In within-group comparisons, cream-type denture adhesives improved both the retentive and occlusal forces at Level II (P<0.05), and powder-type denture adhesives improved the occlusal force at Level II (P<0.01). CONCLUSIONS: Application of cream-type denture adhesives effectively improves the denture retention and occlusal force in complete denture wearers with a moderate degree of difficulty during edentulism treatment.

18.
Materials (Basel) ; 15(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35329550

RESUMO

Recent advances in dental materials involving the development of various biomaterials have been reported. Accordingly, clinicians must incorporate the new dental materials in their practice to respond to the increasing needs of patients. Nanotechnology is defined as a science that deals with nanoscale materials. The use of nanomaterials is gaining popularity in the dental industry for processing and manipulating nanoscale substances in modern dentistry. In this special issue, we invited the submission of several research papers on the development of dental materials. In this general discussion, we briefly explain the relevant research reports with an aim that developments in this field will contribute toward the development of dental care in the future.

19.
Materials (Basel) ; 15(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35329758

RESUMO

The surface of titanium (Ti) dental implants must be modified to improve their applicability, owing to the biological inertness of Ti. This study aims to use sandblasting as a pretreatment method and prepare a hydroxyapatite (HA) coating on Ti to improve its biocompatibility and induce bone bonding and osteogenesis. In this paper, sandblasted Ti discs were coated with α-tricalcium phosphate (α-TCP) via Er:YAG pulsed laser deposition (Er:YAG-PLD). An HA coating was then obtained via the hydrothermal treatment of the discs at 90 °C for 10 h. The surface characteristics of the samples were evaluated by SEM, SPM, XPS, XRD, FTIR, and tensile tests. Rat bone marrow mesenchymal stem cells were seeded on the HA-coated discs to determine cellular responses in vitro. The surface characterization results indicated the successful transformation of the HA coating with a nanorod-like morphology, and its surface roughness increased. In vitro experiments revealed increased cell attachment on the HA-coated discs, as did the cell morphology of fluorescence staining and SEM analysis; in contrast, there was no increase in cell proliferation. This study confirms that Er:YAG-PLD could be used as an implant surface-modification technique to prepare HA coatings with a nanorod-like morphology on Ti discs.

20.
Cells Tissues Organs ; 194(2-4): 307-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21576908

RESUMO

Early events associated with bone healing in patients with type 2 diabetes mellitus appear to be delayed. Hyperglycaemia and an associated increase in oxidative stress are cited as potential factors leading to a change in cellular behaviour. Using an in vivo model monitoring bone formation around implants placed into rat mandibles, we have previously identified that the onset of cell proliferation and osteoblast differentiation are delayed and subsequently prolonged compared with normal bone. This study used the same implant model to characterize oxidative stress biomarkers and primary antioxidant enzyme profiles during diabetic bone healing in vivo. Implants were placed into the sockets of incisors extracted from the mandibles of normal Wistar and diabetic Goto-Kakizaki rats for 3 and 9 weeks after implant insertion. Histochemical analysis confirmed a delay in bone healing around implants in diabetic animals. Immunohistochemical localization of peri-cellular staining for protein carbonyl groups, as a biomarker of oxidized protein content, was slightly higher in diabetic granulation tissue compared with normal tissue. However, no differences were observed in the staining patterns of advanced glycation end products. Minimal differences were observed in the number of cells positive for cytoplasmic superoxide dismutase (SOD)1 or mitochondrial SOD2. Significantly, catalase was absent in diabetic tissues. The results suggest that the oxidative environment in healing bone is differentially affected by hyperglycaemia, particularly in relation to catalase. The significance of these observations for diabetic bone healing is discussed.


Assuntos
Osso e Ossos/patologia , Diabetes Mellitus Experimental/patologia , Estresse Oxidativo , Cicatrização , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA