Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 584(7820): 257-261, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512579

RESUMO

Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Número Básico de Reprodução , COVID-19 , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/transmissão , Europa (Continente)/epidemiologia , Humanos , Pneumonia Viral/mortalidade , Pneumonia Viral/transmissão
2.
PLoS Med ; 21(5): e1004376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723040

RESUMO

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Assuntos
Antimaláricos , Quimioprevenção , Resistência a Medicamentos , Malária , Humanos , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária/prevenção & controle , Malária/transmissão , Malária/epidemiologia , Quimioprevenção/métodos , Teorema de Bayes , Genótipo , Projetos de Pesquisa
3.
Mol Biol Evol ; 38(1): 274-289, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32898225

RESUMO

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.


Assuntos
Malária/transmissão , Modelos Estatísticos , Plasmodium/genética , Adolescente , Criança , Pré-Escolar , Variação Genética , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Prevalência , Superinfecção , Uganda/epidemiologia
4.
BMC Med ; 20(1): 25, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35022051

RESUMO

Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Carga Viral
5.
Nature ; 528(7580): S86-93, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633770

RESUMO

The global burden of malaria has been substantially reduced over the past two decades. Future efforts to reduce malaria further will require moving beyond the treatment of clinical infections to targeting malaria transmission more broadly in the community. As such, the accurate identification of asymptomatic human infections, which can sustain a large proportion of transmission, is becoming a vital component of control and elimination programmes. We determined the relationship across common diagnostics used to measure malaria prevalence - polymerase chain reaction (PCR), rapid diagnostic test and microscopy - for the detection of Plasmodium falciparum infections in endemic populations based on a pooled analysis of cross-sectional data. We included data from more than 170,000 individuals comparing the detection by rapid diagnostic test and microscopy, and 30,000 for detection by rapid diagnostic test and PCR. The analysis showed that, on average, rapid diagnostic tests detected 41% (95% confidence interval = 26-66%) of PCR-positive infections. Data for the comparison of rapid diagnostic test to PCR detection at high transmission intensity and in adults were sparse. Prevalence measured by rapid diagnostic test and microscopy was comparable, although rapid diagnostic test detected slightly more infections than microscopy. On average, microscopy captured 87% (95% confidence interval = 74-102%) of rapid diagnostic test-positive infections. The extent to which higher rapid diagnostic test detection reflects increased sensitivity, lack of specificity or both, is unclear. Once the contribution of asymptomatic individuals to the infectious reservoir is better defined, future analyses should ideally establish optimal detection limits of new diagnostics for use in control and elimination strategies.


Assuntos
Portador Sadio/diagnóstico , Portador Sadio/prevenção & controle , Testes Diagnósticos de Rotina , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/isolamento & purificação , Adolescente , Distribuição por Idade , Portador Sadio/tratamento farmacológico , Portador Sadio/parasitologia , Criança , Pré-Escolar , Feminino , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Masculino , Prevalência
6.
PLoS Med ; 17(10): e1003359, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075101

RESUMO

BACKGROUND: Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as 'test-and-treat' policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM. METHODS AND FINDINGS: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as 'Good', scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged <15 years) SM patients and 5,780 (79.6% aged <15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of >24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p < 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p < 0.001) for a delay of >7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] >3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify. CONCLUSIONS: Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment.


Assuntos
Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Antimaláricos/uso terapêutico , Benin/epidemiologia , Agentes Comunitários de Saúde , Progressão da Doença , Gâmbia/epidemiologia , Humanos , Malária/tratamento farmacológico , Malária/epidemiologia , Malásia/epidemiologia , Moçambique/epidemiologia , Plasmodium falciparum/patogenicidade , Tanzânia/epidemiologia , Tempo para o Tratamento/economia , Uganda/epidemiologia , Iêmen/epidemiologia , Zâmbia/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33139275

RESUMO

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Sudeste Asiático , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Plasmodium falciparum/genética
8.
BMC Med ; 18(1): 47, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098634

RESUMO

BACKGROUND: The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS: We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS: We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION: Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/patogenicidade , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Masculino
9.
Malar J ; 19(1): 453, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298080

RESUMO

BACKGROUND: In clinical trials of therapy for uncomplicated Plasmodium falciparum, there are usually some patients who fail treatment even in the absence of drug resistance. Treatment failures, which can be due to recrudescence or re-infection, are categorized as 'clinical' or 'parasitological' failures, the former indicating that symptoms have returned. Asymptomatic recrudescence has public health implications for continued malaria transmission and may be important for the spread of drug-resistant malaria. As the number of recrudescences in an individual trial is often low, it is difficult to assess how commonplace asymptomatic recrudescence is, and with what factors it is associated. METHODS: A systematic literature review was carried out on clinical trials of artemether-lumefantrine (AL) in patients seeking treatment for symptomatic uncomplicated falciparum malaria, and information on symptoms during treatment failure was recorded. Only treatment failures examined by polymerase chain reaction (PCR) were included, so as to exclude re-infections. A multivariable Bayesian regression model was used to explore factors potentially explaining the proportion of recrudescent infections which are symptomatic across the trials included in the study. RESULTS: Across 60 published trials, including 9137 malaria patients, 37.8% [95% CIs (26.6-49.4%)] of recrudescences were symptomatic. A positive association was found between transmission intensity and the observed proportion of recrudescences that were asymptomatic. Symptoms were more likely to return in trials that only enrolled children aged < 72 months [odds ratio = 1.62, 95% CIs (1.01, 2.59)]. However, 84 studies had to be excluded from this analysis, as recrudescences were not specified as symptomatic or asymptomatic. CONCLUSIONS: AL, the most widely used treatment for uncomplicated P. falciparum in Africa, remains a highly efficacious drug in most endemic countries. However in the small proportion of patients where AL does not clear parasitaemia, the majority of patients do not develop symptoms again and thus would be unlikely to seek another course of treatment. This continued asymptomatic parasite carriage in patients who have been treated may have implications for drug-resistant parasites being introduced into high-transmissions settings.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/efeitos adversos , Combinação Arteméter e Lumefantrina/uso terapêutico , Infecções Assintomáticas , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Recidiva , Falha de Tratamento
10.
Clin Infect Dis ; 66(12): 1883-1891, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304258

RESUMO

Background: The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. Methods: We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Results: Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. Conclusions: In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.


Assuntos
Anopheles/parasitologia , Infecções Assintomáticas/epidemiologia , Reservatórios de Doenças/parasitologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Doenças Endêmicas/estatística & dados numéricos , Etiópia/epidemiologia , Feminino , Humanos , Malária Falciparum/transmissão , Malária Vivax/transmissão , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Adulto Jovem
11.
Malar J ; 16(1): 341, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814310

RESUMO

BACKGROUND: Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission-with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. METHODS: A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2-10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). RESULTS: Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10-40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2-10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. DISCUSSION: These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA.


Assuntos
Antimaláricos/uso terapêutico , Administração de Caso/estatística & dados numéricos , Quimioterapia Combinada/estatística & dados numéricos , Malária Falciparum/prevenção & controle , Administração Massiva de Medicamentos/estatística & dados numéricos , Plasmodium falciparum/efeitos dos fármacos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Modelos Teóricos
14.
Malar J ; 15: 10, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739092

RESUMO

BACKGROUND: Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. METHODS: Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. RESULTS: Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. CONCLUSION: Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.


Assuntos
Resistência a Medicamentos , Malária/tratamento farmacológico , África , África Subsaariana , Antimaláricos/uso terapêutico , Artemisininas , Ásia , Humanos
15.
Malar J ; 14: 321, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26283418

RESUMO

BACKGROUND: Long-acting artemisinin-based combination therapy (LACT) offers the potential to prevent recurrent malaria attacks in highly exposed children. However, it is not clear where this advantage will be most important, and deployment of these drugs is not rationalized on this basis. METHODS: To understand where post-treatment prophylaxis would be most beneficial, the relationship between seasonality, transmission intensity and the interval between malaria episodes was explored using data from six cohort studies in West Africa and an individual-based malaria transmission model. The total number of recurrent malaria cases per 1000 child-years at risk, and the fraction of the total annual burden that this represents were estimated for sub-Saharan Africa. RESULTS: In settings where prevalence is less than 10 %, repeat malaria episodes constitute a small fraction of the total burden, and few repeat episodes occur within the window of protection provided by currently available drugs. However, in higher transmission settings, and particularly in high transmission settings with highly seasonal transmission, repeat malaria becomes increasingly important, with up to 20 % of the total clinical burden in children estimated to be due to repeat episodes within 4 weeks of a prior attack. CONCLUSION: At a given level of transmission intensity and annual incidence, the concentration of repeat malaria episodes in time, and consequently the protection from LACT is highest in the most seasonal areas. As a result, the degree of seasonality, in addition to the overall intensity of transmission, should be considered by policy makers when deciding between ACT that differ in their duration of post-treatment prophylaxis.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Quimioterapia Combinada , Humanos , Incidência , Malária/transmissão , Estações do Ano
16.
J Infect Dis ; 210(12): 1972-80, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951826

RESUMO

BACKGROUND: Ivermectin (IVM), used alongside mass treatment strategies with an artemisinin combination therapy, has been suggested as a possible tool for reducing malaria transmission. Mosquitoes ingesting a bloodmeal containing IVM have increased mortality, reducing the probability that the parasite completes sporogony. METHODS: Human pharmacokinetic data and mortality data for mosquitoes taking bloodmeals containing IVM are used to quantify the mosquitocidal effect of IVM. These are incorporated into a transmission model to estimate the impact of IVM in combination with mass treatment strategies with artemether-lumefantrine on transmission metrics. RESULTS: Adding IVM increases the reductions in parasite prevalence achieved and delays the reemergence of parasites compared to mass treatment alone. This transmission effect is obtained through its effect on vector mortality. IVM effectiveness depends on coverage with the highest impact achieved if given to the whole population rather than only those with existing detectable parasites. Our results suggest that including IVM in a mass treatment strategy can reduce the time taken to interrupt transmission as well as help to achieve transmission interruption in transmission settings in which mass treatment strategies alone would be insufficient. CONCLUSIONS: Including IVM in mass treatment strategies could be a useful adjunct to reduce and interrupt malaria transmission.


Assuntos
Inseticidas/uso terapêutico , Ivermectina/uso terapêutico , Malária/prevenção & controle , Malária/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Culicidae/efeitos dos fármacos , Culicidae/fisiologia , Tratamento Farmacológico/métodos , Feminino , Humanos , Inseticidas/farmacocinética , Ivermectina/farmacocinética , Masculino , Pessoa de Meia-Idade , Sobrevida , Adulto Jovem
17.
medRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352505

RESUMO

Background: Artemisinin partial resistance, mediated by mutations in the Plasmodium falciparum Kelch13 protein (K13), rapidly spread in South-East Asia (SEA), undermining antimalarial efficacies of artemisinin-based combination therapies (ACT). Validated K13 mutations have recently arisen in Africa, but rates of increase are not well characterized. Methods: We investigated K13 mutation prevalence at 16 sites in Uganda (2016-2022, 6586 samples), and five sites in SEA (2003-2018, 5465 samples) by calculating selection coefficients using Bayesian mixed-effect linear models. We then tested whether SEA K13 mutation prevalence could have been forecast accurately using up to the first five years of available data and forecast future K13 mutation prevalence in Uganda. Findings: The selection coefficient for the prevalence of relevant K13 mutations (441L, 469F/Y, 561H, 675V) was estimated at s=0·383 (95% CrI: 0·247 - 0·528) per year, a 38% relative prevalence increase. Selection coefficients across Uganda were s=0·968 (0·463 - 1·569) for 441L, s=0·153 (-0·445 - 0·727) for 469F, s=0·222 (-0·011 - 0·398) for 469Y, and s=0·152 (-0·023 - 0·312) for 675V. In SEA, the selection coefficient was s=-0·005 (-0·852 - 0·814) for 539T, s=0·574 (-0·092 - 1·201) for 580Y, and s=0·308 (0·089 - 0·536) for all validated K13 mutations. Forecast prevalences for Uganda assuming constant selection neared fixation (>95% prevalence) within a decade (2028-2033) for combined K13 mutations. Interpretation: The selection of K13 mutations in Uganda was at a comparable rate to that observed in SEA, suggesting K13 mutations may continue to increase quickly in Uganda. Funding: NIH R01AI156267, R01AI075045, and R01AI089674.

18.
Nat Commun ; 14(1): 5691, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709763

RESUMO

Severe malarial anaemia can be fatal if not promptly treated. Hospital studies may under-represent the true burden because cases often occur in settings with poor access to healthcare. We estimate the relationship of community prevalence of malaria infection and severe malarial anaemia with the incidence of severe malarial anaemia cases in hospital, using survey data from 21 countries and hospital data from Kenya, Tanzania and Uganda. The estimated percentage of severe malarial anaemia cases that were hospitalised is low and consistent for Kenya (21% (95% CrI: 7%, 47%)), Tanzania (18% (95% CrI: 5%, 52%)) and Uganda (23% (95% CrI: 9%, 48%)). The majority of severe malarial anaemia cases remain in the community, with the consequent public health burden being contingent upon the severity of these cases. Alongside health system strengthening, research to better understand the spectrum of disease associated with severe malarial anaemia cases in the community is a priority.


Assuntos
Anemia , Malária , Humanos , Quênia/epidemiologia , Tanzânia/epidemiologia , Anemia/epidemiologia , Malária/complicações , Malária/epidemiologia , Hospitais
19.
Nat Commun ; 14(1): 402, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697413

RESUMO

Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) with dihydroartemisinin-piperaquine reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0-5-year old children after hospitalised SMA. We fitted the model to a multicentre clinical PDMC trial using Bayesian methods and modelled the potential impact of PDMC across malaria-endemic African countries. In the 20 highest-burden countries, we estimate that only 2-5 children need to be given PDMC to prevent one hospitalised malaria episode, and less than 100 to prevent one death. If all hospitalised SMA cases access PDMC in moderate-to-high transmission areas, 38,600 (range 16,900-88,400) malaria-associated readmissions could be prevented annually, depending on access to hospital care. We estimate that recurrent SMA post-discharge constitutes 19% of all SMA episodes in moderate-to-high transmission settings.


Assuntos
Anemia , Antimaláricos , Malária , Pré-Escolar , Humanos , Lactente , Recém-Nascido , África/epidemiologia , Assistência ao Convalescente , Anemia/complicações , Anemia/epidemiologia , Anemia/prevenção & controle , Antimaláricos/uso terapêutico , Teorema de Bayes , Quimioprevenção/métodos , Combinação de Medicamentos , Malária/complicações , Malária/epidemiologia , Malária/prevenção & controle , Alta do Paciente , Estudos Multicêntricos como Assunto , Ensaios Clínicos como Assunto
20.
Nat Commun ; 14(1): 3840, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380650

RESUMO

Reported COVID-19 cases and associated mortality remain low in many sub-Saharan countries relative to global averages, but true impact is difficult to estimate given limitations around surveillance and mortality registration. In Lusaka, Zambia, burial registration and SARS-CoV-2 prevalence data during 2020 allow estimation of excess mortality and transmission. Relative to pre-pandemic patterns, we estimate age-dependent mortality increases, totalling 3212 excess deaths (95% CrI: 2104-4591), representing an 18.5% (95% CrI: 13.0-25.2%) increase relative to pre-pandemic levels. Using a dynamical model-based inferential framework, we find that these mortality patterns and SARS-CoV-2 prevalence data are in agreement with established COVID-19 severity estimates. Our results support hypotheses that COVID-19 impact in Lusaka during 2020 was consistent with COVID-19 epidemics elsewhere, without requiring exceptional explanations for low reported figures. For more equitable decision-making during future pandemics, barriers to ascertaining attributable mortality in low-income settings must be addressed and factored into discourse around reported impact differences.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Zâmbia/epidemiologia , Sepultamento , Pandemias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA