Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 138, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580990

RESUMO

BACKGROUND: Periodontitis is the most common oral disease in dogs, and its progression and severity are influenced by risk factors, such as age and body size. Recent studies have assessed the canine oral microbiota in relation to different stages of periodontitis and niches within the oral cavity. However, knowledge of the bacterial composition at different ages and body sizes, especially in puppies, is limited. This study aimed to characterize the oral microbiota in the healthy gingiva of small breed puppies using next-generation sequencing. Additionally, we assessed the impact of dental care practices and the presence of retained deciduous teeth on the oral microbiota. RESULTS: In this study, plaque samples were collected from the gingival margin of 20 small breed puppies (age, 6.9 ± 0.6 months). The plaque samples were subjected to next-generation sequencing targeting the V3-V4 region of the 16 S rRNA. The microbiota of the plaque samples was composed mostly of gram-negative bacteria, primarily Proteobacteria (54.12%), Bacteroidetes (28.79%), and Fusobacteria (5.11%). Moraxella sp. COT-017, Capnocytophaga cynodegmi COT-254, and Bergeyella zoohelcum COT-186 were abundant in the oral cavity of the puppies. In contrast, Neisseria animaloris were not detected. The high abundance of Pasteurellaceae suggests that this genus is characteristic of the oral microbiota in puppies. Dental care practices and the presence of retained deciduous teeth showed no effects on the oral microbiota. CONCLUSIONS: In this study, many bacterial species previously reported to be detected in the normal oral cavity of adult dogs were also detected in 6-8-month-old small breed dogs. On the other hand, some bacterial species were not detected at all, while others were detected in high abundance. These data indicate that the oral microbiota of 6-8-month-old small breed dogs is in the process of maturating in to the adult microbiota and may also have characteristics of the small dog oral microbiota.


Assuntos
Doenças do Cão , Microbiota , Periodontite , Cães , Animais , RNA Ribossômico 16S/genética , Gengiva/microbiologia , Periodontite/veterinária , Microbiota/genética , Bactérias/genética , Doenças do Cão/microbiologia
2.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948225

RESUMO

Comparative structural/molecular biology by single-molecule analyses combined with single-cell dissection, mass spectroscopy, and biochemical reconstitution have been powerful tools for elucidating the mechanisms underlying genome DNA folding. All genomes in the three domains of life undergo stepwise folding from DNA to 30-40 nm fibers. Major protein players are histone (Eukarya and Archaea), Alba (Archaea), and HU (Bacteria) for fundamental structural units of the genome. In Euryarchaeota, a major archaeal phylum, either histone or HTa (the bacterial HU homolog) were found to wrap DNA. This finding divides archaea into two groups: those that use DNA-wrapping as the fundamental step in genome folding and those that do not. Archaeal transcription factor-like protein TrmBL2 has been suggested to be involved in genome folding and repression of horizontally acquired genes, similar to bacterial H-NS protein. Evolutionarily divergent SMC proteins contribute to the establishment of higher-order structures. Recent results are presented, including the use of Hi-C technology to reveal that archaeal SMC proteins are involved in higher-order genome folding, and the use of single-molecule tracking to reveal the detailed functions of bacterial and eukaryotic SMC proteins. Here, we highlight the similarities and differences in the DNA-folding mechanisms in the three domains of life.


Assuntos
Bactérias , Euryarchaeota , Evolução Molecular , Genoma , Bactérias/genética , Bactérias/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo
3.
J Cell Physiol ; 234(2): 1745-1757, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30105896

RESUMO

Ameloblastin (Ambn) is an extracellular matrix protein and member of the family of enamel-related gene products. Like amelogenin, Ambn is mainly associated with tooth development, especially biomineralization of enamel. Previous studies have shown reductions in the skeletal dimensions of Ambn-deficient mice, suggesting that the protein also has effects on the differentiation of osteoblasts and/or osteoclasts. However, the specific pathways used by Ambn to influence osteoclast differentiation have yet to be identified. In the present study, two cellular models, one based on bone marrow cells and another on RAW264.7 cells, were used to examine the effects of Ambn on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The results showed that Ambn suppresses osteoclast differentiation, cytoskeletal organization, and osteoclast function by the downregulation of the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts, actin ring formation, and areas of pit resorption. The expression of the osteoclast-specific genes TRAP, MMP9, cathepsin K, and osteoclast stimulatory transmembrane protein (OC-STAMP) was abolished in the presence of Ambn, while that of nuclear factor of activated T cells cytoplasmic 1 (NFATc1), the master regulatory factor of osteoclastogenesis, was also attenuated by the downregulation of c-Fos expression. In Ambn-induced RAW264.7 cells, phosphorylation of cAMP-response element-binding protein (CREB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), but not extracellular signal-regulated kinase 1/2 (ERK1/2), was reduced. Calcium oscillation was also decreased in the presence of Ambn, suggesting its involvement in both RANKL-induced osteoclastogenesis and costimulatory signaling. B-lymphocyte-induced maturation protein-1 (Blimp1), a transcriptional repressor of negative regulators of osteoclastogenesis, was also downregulated by Ambn, resulting in the elevated expression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB), B-cell lymphoma 6 (Bcl6), and interferon regulatory factor-8 (Irf8). Taken together, these findings suggest that Ambn suppresses RANKL-induced osteoclastogenesis by modulating the NFATc1 axis.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Macrófagos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Animais , Sinalização do Cálcio , Diferenciação Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Masculino , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7
4.
J Cell Biochem ; 120(8): 12604-12617, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825233

RESUMO

Macrophages, critical modulators of the immune response, polarize into various phenotypes, including M1 and M2. M1 macrophages are typically activated by lipopolysaccharide and produce proinflammatory cytokines. Conversely, M2 macrophages are activated by stimulation with interleukin 4 (IL)-4 and promote tissue remodeling and anti-inflammatory reactions. Recently, polyunsaturated fatty acids (PUFAs) have been shown to play important roles in the regulation of inflammation. Docosahexaenoic acid (DHA), a PUFA, has anti-inflammatory effects on chronic inflammatory disease, but its role in macrophage polarization remains unclear. In this study, we clarified the effects of DHA on macrophage polarization using U937 cells. Treatment with DHA resulted in upregulation of M2 macrophage markers and increased secretion of anti-inflammatory cytokines by U937 cells. IL-4, but not DHA, triggered phosphorylation of signal transducer and activator of transcription 6 (STAT6). DHA enhanced the expression of krüppel-like factor-4 (KLF4), a transcription factor involved in the regulation of macrophage polarization and increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK). A selective inhibitor of p38 MAPK downregulated the expression of CD206 in DHA-treated U937 cells. Moreover, inhibitors of autophagy suppressed the phosphorylation of p38 MAPK and the expression of CD206 in DHA-treated U937 cells. Expression of microtubule-associated protein light chain 3-II, which is involved in autophagosome formation, was enhanced in DHA-treated U937 cells. Taken together, these results indicated that DHA enhanced the expression of M2 macrophage markers through the p38 MAPK signaling pathway and autophagy, suggesting that DHA regulates M2 macrophage polarization and plays an important role in innate immunity.


Assuntos
Autofagia , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Interleucina-4/metabolismo , Fator 4 Semelhante a Kruppel , Macrófagos/metabolismo , Macrófagos/fisiologia , Células THP-1 , Células U937
5.
Biochem Biophys Res Commun ; 512(3): 537-543, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914204

RESUMO

Hyaluronic acid (HA) has a pivotal role in bone and cartilage metabolism. In this study, we investigated the effect and underlying mechanisms of HA accumulation on the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) induced by 1α,25(OH)2D3 and dexamethasone in stromal cells, which support osteoclastogenesis. Degradation of HA by hyaluronidase (HA'ase) treatment enhanced the expression of RANKL in ST2 cells stimulated with 1α,25(OH)2D3 and dexamethasone. Down-regulation of hyaluronan synthase 2 (HAS2) expression by siRNA also stimulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Results from a cell co-culture system with bone marrow cell showed that 1α,25(OH)2D3 and dexamethasone-induced RANKL expression in HA'ase treated- and HAS2 siRNA transfected-ST2 cells was down-regulated by treatment of cells with high molecular weight HA. In contrast, transforming growth factor-ß1 (TGF-ß1), which stimulates HAS2 expression and HA synthesis, down-regulated RANKL expression induced by 1α,25(OH)2D3 and dexamethasone. Interestingly, knockdown of has2 gene enhanced the expression of vitamin D receptor (VDR) and phosphorylation of signal transducers and activator of transcription 3 (STAT3) in ST2 cells stimulated by 1α,25(OH)2D3 and dexamethasone. These results indicate that accumulation of HA in bone marrow cells may affect RANKL-mediated osteoclast-supporting activity via regulation of VDR and STAT3 signaling pathways.


Assuntos
Ácido Hialurônico/metabolismo , Osteogênese , Ligante RANK/metabolismo , Células Estromais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Células Estromais/citologia
6.
J Cell Biochem ; 119(8): 6974-6985, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29737562

RESUMO

Several growth factors in bone tissues are reported to be associated with osteoclastogenesis. Activin-A, a member of the transforming growth factor-ß (TGF-ß) family is known to be present in bone tissues and an important regulator in osteoclastogenesis with SMAD-mediated signaling being crucial for inducing osteoclast differentiation. In the present study, we examined the effect and underlying mechanisms of activin-A on osteoclast formation in vitro culture systems. Activin-A enhanced osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW 264.7 cells induced by receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and/or macrophage stimulating factor (M-CSF). We also found that activin-A stimulated bone resorption and actin ring formation induced by RANKL and/or M-CSF. Furthermore, activin-A enhanced RANKL-induced expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1), a key regulator of osteoclastogenesis, thereby increasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, and cathepsin K. Blockage of receptor binding by follistatin, an activing-binding protein suppressed the activin-A-mediated stimulation of NFATc1. In addition, activin-A increased RANKL-induced c-fos expression without significantly affecting the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment of the cells with a specific inhibitor of SMAD2/3 attenuated the activin-A-induced expression of NFATc1 and co-immunoprecipitation assay revealed that treatment with activin-A increased physical interaction of phosphorylated-c-fos and phosphorylated-SMAD2 protein induced by RANKL. These results suggest that activin-A enhances RANKL-induced osteoclast formation mediated by interaction of c-fos and smad2/3.


Assuntos
Ativinas/farmacologia , Células da Medula Óssea/metabolismo , Osteoclastos/metabolismo , Animais , Células da Medula Óssea/citologia , Catepsina K/metabolismo , Folistatina/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ligante RANK/metabolismo , Células RAW 264.7 , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
7.
Cell Biol Int ; 42(12): 1622-1631, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238554

RESUMO

Histone deacetylase has attracted much attention as an epigenetic factor, and the modulation of histone and transcription factor acetylation status is important for regulating gene expression. Moreover, histone deacetylase inhibitors are involved in cellular growth and differentiation. In the present study, we examined the effects of Ky-2, a hybrid-compound HDAC inhibitor, on inflammatory reactions and the polarization of macrophages in vitro. Human monocyte-like THP-1 cells were polarized to macrophage-like cells using phorbol 12-myristate 13-acetate, and then polarized to M1 macrophages with LPS. Ky-2 inhibited HDAC2 expression and enhanced the acetylation of histone H3 in THP-1 cells. It also downregulated the expression of the IL-1ß-encoding gene and the LPS-induced phosphorylation of p38 mitogen-activated protein kinases in THP-1 cells. Moreover, the expression of nod-like receptor protein 3 and cleaved caspase-1 p20 was downregulated in Ky-2-treated THP-1 cells. In contrast, this agent upregulated the expression of IL-1ra in LPS-treated THP-1 cells. These results indicate that Ky-2-treatment downregulates the expression of the inflammatory cytokine, IL-1ß, in LPS-treated THP-1 cells, suggesting that Ky-2 might regulate M1 macrophage polarization through the suppression of inflammatory responses such as NLRP3 inflammasome activation.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Inflamação/patologia , Macrófagos/patologia , Acetilação , Ativação Enzimática/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1
8.
J Cell Physiol ; 232(12): 3481-3495, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28105703

RESUMO

Endothelial transmigration of macrophages is accomplished by matrix metalloproteinase (MMP)-induced degradation of the basement membrane and extracellular matrix components. Macrophages upregulate MMP-9 expression and secretion upon immunological challenges and require its activity for migration during inflammatory responses. Interleukin (IL)-33 is a recently discovered pro-inflammatory cytokine that belongs to the IL-1 family. The aim of this study was to elucidate the mechanisms underlying IL-33-induced MMP-9 expression in the mouse monocyte/macrophage line RAW264.7. IL-33 increased MMP-9 mRNA and protein expression in RAW264.7 cells. Blockage of IL-33-IL-33 receptor (ST2L) binding suppressed IL-33-mediated induction of MMP-9. IL-33 induced phosphorylation and nuclear translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-kappa B (NF-κB). Chromatin immunoprecipitation indicated that IL-33 increased c-fos recruitment to the MMP-9 promoter. Reporter assay findings also revealed that IL-33 stimulated the transcriptional activity of activator protein 1 (AP-1). Pre-treatment of the cells with a specific inhibitor of ERK1/2 and NF-κB attenuated the IL-33-induced activation of AP-1 subunits, transcriptional activity of AP-1, and expression of MMP-9. We also demonstrated that ERK-dependent activation of cAMP response element binding protein (CREB) is a key step for AP-1 activation by IL-33. These results indicate an essential role of ERK/CREB and NF-κB cascades in the induction of MMP-9 in monocytes/macrophages through AP-1 activation.


Assuntos
Interleucina-33/farmacologia , Macrófagos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/genética , Camundongos , NF-kappa B/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Células RAW 264.7 , Interferência de RNA , Receptores de Interleucina-1/agonistas , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Ativação Transcricional , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
9.
J Cell Biochem ; 118(10): 3308-3317, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295583

RESUMO

Ameloblastin (AMBN) is an enamel matrix protein that has various biological functions such as healing dental pulp and repairing bone fractures. In the present study, we clarified the effect of AMBN on the expression of an inflammatory cytokine, interleukin-1ß (IL-1ß) in lipopolysaccharide (LPS)-treated human macrophages. Real-time RT-PCR analysis showed that LPS treatment upregulated expression of the IL-1ß gene in U937 cells. Interestingly, AMBN significantly enhanced IL-1ß gene expression in LPS-treated U937 cells as well as the secretion of mature IL-1ß into culture supernatants by these cells. AMBN also activated caspase-1 p10 expression in LPS-treated U937 cells. Pretreatment with a caspase-1 inhibitor, Z-YVAD-FMK, downregulated the mature IL-1ß expression enhanced by AMBN treatment in LPS-treated U937 cells. A co-immunoprecipitation assay showed that treatment with LPS and AMBN upregulated toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) interactions, but there was no significant difference compared with LPS treatment alone in U937 cells. In contrast, western blot analysis revealed that AMBN remarkably prolonged the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase (MAPK) family. An ERK1/2-selective inhibitor, U0126, suppressed expression of the IL-1ß gene as well as its protein expression in U937 cells treated with LPS and AMBN. Taken together, these results indicate that AMBN enhances IL-1ß production in LPS-treated U937 cells through ERK1/2 phosphorylation and caspase-1 activation, suggesting that AMBN upregulates the inflammatory response in human macrophages and plays an important role in innate immunity. J. Cell. Biochem. 118: 3308-3317, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Imunidade Inata , Interleucina-1beta/biossíntese , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Regulação para Cima , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Células U937
10.
Biochem Biophys Res Commun ; 485(3): 621-626, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28161637

RESUMO

Ameloblastin (Ambn) and enamelin (Enam) play a pivotal role in enamel mineralization. Previous studies have demonstrated that these enamel-related gene products also affect bone growth and remodeling; however, the underlying mechanisms have not been elucidated. In the present study, we examined the effects of Ambn and Enam on the receptor activator of nuclear factor kappa-B ligand (RANKL) expression induced with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and dexamethasone (DEX) on mouse bone marrow stromal cell line ST2 cells. We then verified the effect of Ambn and Enam on osteoclastogenesis. We found that pretreatment with recombinant human Ambn (rhAmbn) and recombinant human Enam (rhEnam) remarkably suppressed RANKL mRNA and protein expression induced with 1,25(OH)2D3 and DEX. Interestingly, rhAmbn and rhEnam attenuated the phosphorylation of mitogen-activated protein kinases (MAPK), including ERK1/2, JNK, and p38 in ST2 cells stimulated with 1,25(OH)2D3 and DEX. Moreover, pretreatment with specific inhibitors of ERK1/2 and p38, but not JNK, blocked RANKL mRNA and protein expression. Cell co-culture results showed that rhAmbn and rhEnam downregulated mouse bone marrow cell differentiation into osteoclasts induced with 1,25(OH)2D3 and DEX-stimulated ST2 cells. These results suggest that Ambn and Enam may indirectly suppress RANKL-induced osteoclastogenesis via downregulation of p38 and ERK1/2 MAPK signaling pathways in bone marrow stromal cells.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Proteínas da Matriz Extracelular/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Ligante RANK/metabolismo , Animais , Western Blotting , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Proteínas do Esmalte Dentário/genética , Dexametasona/farmacologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ligante RANK/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitaminas/farmacologia
11.
FASEB J ; 30(7): 2591-601, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27048541

RESUMO

Glycerophospholipids, which are components of biomembranes, are formed de novo by the Kennedy pathway and subsequently mature through the Lands cycle. Lysophospholipid acyltransferases (LPLATs) are key enzymes in both pathways and influence the fatty acid composition of biomembranes. Neuronal differentiation is characterized by neurite outgrowth, which requires biomembrane biosynthesis. However, the role of LPLATs in neuronal differentiation remains unknown. In this study, we examined whether LPLATs are involved in neuronal differentiation using all-trans-retinoic acid (ATRA)-treated P19C6 cells. In these cells, mRNA levels of lysophosphatidylethanolamine acyltransferase (LPEAT)-1/membrane-bound O-acyltransferase (MBOAT)-1 were higher than those in undifferentiated cells. LPEAT enzymatic activity increased with 16:0- and 18:1-CoA as acyl donors. When LPEAT1/MBOAT1 was knocked down with small interfering RNA (siRNA), outgrowth of neurites and expression of neuronal markers decreased in ATRA-treated P19C6 cells. Voltage-dependent calcium channel activity was also suppressed in these cells transfected with LPEAT1/MBOAT1 siRNA. These results suggest that LPEAT1/MBOAT1 plays an important role in neurite outgrowth and function.-Tabe, S., Hikiji, H., Ariyoshi, W., Hashidate-Yoshida, T., Shindou, H., Okinaga, T., Shimizu, T., Tominaga, K., Nishihara, T. Lysophosphatidylethanolamine acyltransferase 1/membrane-bound O-acyltransferase 1 regulates morphology and function of P19C6 cell-derived neurons.


Assuntos
Aciltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Neurônios/citologia , Aciltransferases/genética , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tretinoína/farmacologia
12.
J Biol Chem ; 289(27): 19191-203, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24821724

RESUMO

Several immune system cell surface receptors are reported to be associated with osteoclastogenesis. Dectin 1, a lectin receptor for ß-glucan, is found predominantly on cells of the myeloid lineage. In this study, we examined the effect of the dectin 1 agonist curdlan on osteoclastogenesis. In mouse bone marrow cells and dectin 1-overexpressing RAW 264.7 cells (d-RAWs), curdlan suppressed receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, bone resorption, and actin ring formation in a dose-dependent manner. This was achieved within non-growth inhibitory concentrations at the early stage. Conversely, curdlan had no effect on macrophage colony-stimulating factor-induced differentiation. Furthermore, curdlan inhibited RANKL-induced nuclear factor of activated T cell cytoplasmic 1 (NFATc1) expression, thereby decreasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, cathepsin K, and matrix metallopeptidase 9. Curdlan inhibited RANKL-induced c-fos expression, followed by suppression of NFATc1 autoamplification, without significantly affecting the NF-κB signaling pathway. We also observed that curdlan treatment decreased Syk protein in d-RAWs. Inhibition of the dectin 1-Syk kinase pathway by Syk-specific siRNA or chemical inhibitors suppressed osteoclast formation and NFATc1 expression stimulated by RANKL. In conclusion, our results demonstrate that curdlan potentially inhibits osteoclast differentiation, especially NFATc1 expression, and that Syk kinase plays a crucial role in the transcriptional pathways. This suggests that the activation of dectin 1-Syk kinase interaction critically regulates the genes required for osteoclastogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/agonistas , Fatores de Transcrição NFATC/antagonistas & inibidores , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , beta-Glucanas/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Proteólise/efeitos dos fármacos , Ligante RANK/farmacologia , Quinase Syk , beta-Glucanas/química
13.
J Cell Biochem ; 116(12): 2840-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25994902

RESUMO

Lysophospholipid acyltransferases (LPLATs) regulate the diversification of fatty acid composition in biological membranes. Lysophosphatidylcholine acyltransferases (LPCATs) are members of the LPLATs that play a role in inflammatory responses. M1 macrophages differentiate in response to lipopolysaccharide (LPS) and are pro-inflammatory, whereas M2 macrophages, which differentiate in response to interleukin-4 (IL-4), are anti-inflammatory and involved in homeostasis and wound healing. In the present study, we showed that LPCATs play an important role in M1/M2-macrophage polarization. LPS changed the shape of PMA-treated U937 cells from rounded to spindle shaped and upregulated the mRNA and protein expression of the M1 macrophage markers CXCL10, TNF-α, and IL-1ß. IL-4 had no effect on the shape of PMA-treated U937 cells and upregulated the M2 macrophage markers CD206, IL-1ra, and TGF-ß in PMA-treated U937 cells. These results suggest that LPS and IL-4 promote the differentiation of PMA-treated U937 cells into M1- and M2-polarized macrophages, respectively. LPS significantly downregulated the mRNA expression of LPCAT3, one of four LPCAT isoforms, and suppressed its enzymatic activity toward linoleoyl-CoA and arachidonoyl-CoA in PMA-treated U937 cells. LPCAT3 knockdown induced a spindle-shaped morphology typical of M1-polarized macrophages, and increased the secretion of CXCL10 and decreased the levels of CD206 in IL-4-activated U937 cells. This indicates that knockdown of LPCAT3 shifts the differentiation of PMA-treated U937 cells to M1-polarized macrophages. Our findings suggest that LPCAT3 plays an important role in M1/M2-macrophage polarization, providing novel potential therapeutic targets for the regulation of immune and inflammatory disorders.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Polaridade Celular/genética , Inflamação/genética , Macrófagos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Inflamação/patologia , Interleucina-4/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Ácidos Polimetacrílicos/farmacologia , RNA Mensageiro/biossíntese , Células U937
14.
Biochem Biophys Res Commun ; 460(2): 320-6, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795135

RESUMO

Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Interleucinas/fisiologia , Osteoclastos/citologia , Ligante RANK/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Primers do DNA , Feminino , Fatores Reguladores de Interferon/genética , Interleucina-33 , Masculino , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Ligante RANK/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fatores de Transcrição/genética
15.
J Photochem Photobiol B ; 256: 112926, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714001

RESUMO

Periodontitis, a chronic infectious disease leading to gingival atrophy and potential tooth loss through alveolar bone resorption, is closely linked to the oral microbiome. Fusobacterium nucleatum, known to facilitate late-stage bacterial colonization in the oral microbiome, plays a crucial role in the onset of periodontitis. Controlling F. nucleatum abundance is vital for preventing and treating periodontal disease. Photodynamic therapy combined with 5-aminolevulinic acid (ALA-PDT) has been reported to be bactericidal against Pseudomonas aeruginosa and Staphylococcus aureus. We aimed to investigate the bactericidal potential of ALA-PDT against F. nucleatum, which was evaluated by examining the impact of varying 5-ALA concentrations, culture time, and light intensity. After ALA-PDT treatment, DNA was extracted from interdental plaque samples collected from 10 volunteers and sequenced using the Illumina MiSeq platform. To further elucidate the bactericidal mechanism of ALA-PDT, porphyrins were extracted from F. nucleatum following cultivation with 5-ALA and subsequently analyzed using fluorescence spectra. ALA-PDT showed a significant bactericidal effect against F. nucleatum. Its bactericidal activity demonstrated a positive correlation with culture time and light intensity. Microbiota analysis revealed no significant alteration in α-diversity within the ALA-PDT group, although there was a noteworthy reduction in the proportion of the genus Fusobacterium. Furthermore, fluorescence spectral analysis indicated that F. nucleatum produced an excitable photosensitive substance following the addition of 5-ALA. Overall, if further studies confirm these results, this combined therapy could be an effective strategy for reducing the prevalence of periodontitis.


Assuntos
Ácido Aminolevulínico , Fusobacterium nucleatum , Periodontite , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fusobacterium nucleatum/efeitos dos fármacos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Humanos , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Adulto , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Microbiota/efeitos dos fármacos
16.
Arch Oral Biol ; 160: 105897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290225

RESUMO

OBJECTIVE: Resveratrol is a natural phytoalexin that has anti-inflammatory properties, reverses doxorubicin resistance, and inhibits epithelial-mesenchymal transition (EMT) in many types of cancer cells. Fusobacterium nucleatum is reportedly enriched in oral squamous cell carcinoma (OSCC) tissues compared to adjacent normal tissues, sparking interest in the relationship between F. nucleatum and OSCC. Recently, F. nucleatum was shown to be associated with EMT in OSCC. In the present study, we aimed to investigate the effects of the natural plant compound resveratrol on F. nucleatum-induced EMT in OSCC. DESIGN: F. nucleatum was co-cultured with OSCC cells, with a multiplicity of infection (MOI) of 300:1. Resveratrol was used at a concentration of 10 µM. Cell Counting Kit-8 and wound healing assays were performed to examine the viability and migratory ability of OSCC cells. Subsequently, real-time RT-PCR was performed to investigate the gene expression of EMT-related markers. Western blotting and immunofluorescence analyses were used to further analyze the expression of the epithelial marker E-cadherin and the EMT transcription factor SNAI1. RESULTS: Co-cultivation with F. nucleatum did not significantly enhance cell viability. The co-cultured cells displayed similarities to the positive control of EMT, exhibiting enhanced migration and expression changes in EMT-related markers. SNAI1 was significantly upregulated, whereas E-cadherin, was significantly downregulated. Notably, resveratrol inhibited F. nucleatum-induced cell migration, decreasing the expression of SNAI1. CONCLUSIONS: Resveratrol inhibited F. nucleatum-induced EMT by downregulating SNAI1, which may provide a target for OSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Resveratrol/farmacologia , Fusobacterium nucleatum/metabolismo , Polifenóis/farmacologia , Neoplasias Bucais/genética , Linhagem Celular Tumoral , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Carcinoma de Células Escamosas de Cabeça e Pescoço , Movimento Celular , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
17.
Biochem Biophys Rep ; 38: 101680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38455593

RESUMO

In the immune system, the detection of pathogens through various mechanisms triggers immune responses. Several types of specific programmed cell deaths play a role in the inflammatory reaction. This study emphasizes the inflammatory response induced by Actinomycetes. Actinomyces spp. are resident bacteria in human oral plaque and often serve as a bridge for pathogenic bacteria, which lack affinity to the tooth surface, aiding their colonization of the plaque. We aim to investigate the potential role of Actinomyces oris in the early stages of oral diseases from a new perspective. Actinomyces oris MG-1 (A. oris) was chosen for this research. Differentiated THP-1 (dTHP-1) cells were transiently treated with A. oris to model the inflammatory reaction. Cell viability, as well as relative gene and protein expression levels of dTHP-1 cells, were assessed using CCK-8, quantitative real-time polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blot assay. The treatment decreased cell viability and increased the expression of inflammatory genes such as IL-1R1 and NLRP3. It was also observed to significantly enhance the release of IL-1ß/IL-18 into the supernatant. Immunoblot analysis revealed a notable increase in the expression of N-gasdermin D persisting up to 24 h. Conversely, in models pre-treated with TLR2 inhibitors, N-gasdermin D was detectable only 12 h post-treatment and absent at 24 h. These results suggest that Actinomyces oris MG-1 induces pyroptosis in dTHP-1 cells via TLR2, but the process is not solely dependent on TLR2.

18.
J Oral Biosci ; 66(2): 358-364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641252

RESUMO

OBJECTIVES: Rothia spp. are emerging as significant bacteria associated with oral health, with Rothia dentocariosa being one of the most prevalent species. However, there is a lack of studies examining these properties at the genetic level. This study aimed to establish a genetic modification platform for R. dentocariosa. METHODS: Rothia spp. were isolated from saliva samples collected from healthy volunteers. Subsequently, R. dentocariosa strains were identified through colony morphology, species-specific polymerase chain reaction (PCR), and 16S ribosomal RNA gene sequencing. The identified strains were then transformed with plasmid pJRD215, and the most efficient strain was selected. Transposon insertion mutagenesis was performed to investigate the possibility of genetic modifications. RESULTS: A strain demonstrating high transforming ability, designated as R. dentocariosa LX16, was identified. This strain underwent transposon insertion mutagenesis and was screened for 5-fluoroorotic acid-resistant transposants. The insertion sites were confirmed using arbitrary primed PCR, gene-specific PCR, and Sanger sequencing. CONCLUSION: This study marks the first successful genetic modification of R. dentocariosa. Investigating R. dentocariosa at the genetic level can provide insights into its role within the oral microbiome.


Assuntos
Elementos de DNA Transponíveis , Micrococcaceae , Reação em Cadeia da Polimerase , Elementos de DNA Transponíveis/genética , Humanos , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Mutagênese Insercional , Saliva/microbiologia , Plasmídeos/genética
19.
PLoS One ; 19(8): e0308404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110743

RESUMO

BACKGROUND: In dentistry, instruments, appliances, and body fluids such as saliva or blood are possible sources of infection. Although conventional antiseptic procedures effectively prevent infection, spittoons cannot be sanitized between each treated patient and are usually washed only with running water. However, there is currently no fast and efficient disinfection method that can be implemented between treatments. An optically filtered krypton chloride excimer lamp using ultraviolet light (Far UV-C) in the 200-230 nm wavelength range (innocuous to humans) has been recently used as a virus- and bacteria-inactivating technology. This study aimed to identify the bioburden of a dental spittoon and examine the susceptibility of two oral Streptococcus and two Enterococci to 222-nm Far UV-C by irradiating the spittoon with 222 nm Far UV-C for 5 min before evaluating the disinfection effect. METHODS: Bacterial analysis and real-time polymerase-chain reaction testing was used to confirm the spittoon's biological contamination. Bacterial susceptibility to a 222-nm Far UV-C was determined with a graded dose irradiation test. After each treatment, the spittoon was irradiated with 222-nm Far UV-C for 5 min, and the disinfecting effect was evaluated. Microbial analysis of the spittoon's surface was performed using the Silva database. RESULTS: We found that > 97% of the microbes consisted of six bacterial phyla, whereas no viruses were found. Pseudomonas aeruginosa was frequently detected. The 1-log reduction value of two oral-derived Streptococci and two Enterococci species at 222-nm Far UV-C was 4.5-7.3 mJ/cm2. Exposure of the spittoon to 222-nm Far UV-C at 3.6-13.5 mJ/cm2 significantly decreased bacterial counts (p < 0.001). CONCLUSIONS: Irradiation with 222-nm Far UV-C at 3.6-13.5 mJ/cm2 significantly eliminates bacteria in spittoons, even when they are only rinsed with water. Hence, 222-nm Far UV-C irradiation may inhibit the risk of bacterial transmission from droplets in sink surfaces.


Assuntos
Desinfecção , Raios Ultravioleta , Desinfecção/métodos , Desinfecção/instrumentação , Humanos , Enterococcus/efeitos da radiação
20.
Biochem Biophys Res Commun ; 432(4): 580-5, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23438438

RESUMO

Aggrecan degradation is considered to play a key role in the progression of osteoarthritis (OA). Aggrecanases are members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, and degrade aggrecan in OA cartilage. The aim of this study was to clarify the mechanisms of expression of ADAMTS4 induced by IL-1ß in human fibroblast-like synoviocyte (HFLS) cells by high molecular weight hyaluronan (HMW-HA), a therapeutic agent used for OA. Monolayer cultures of HFLS cells were incubated with IL-1ß and HMW-HA. In some experiments, cells were pretreated with the CD44 function-blocking monoclonal antibody or inhibitors of signaling pathways prior to addition of IL-1ß and HMW-HA. The expressions of ADAMTS4 mRNA and protein were monitored using real-time RT-PCR, Western blotting, and immunofluorescence microscopy. To further determine the role of HMW-HA in IL-1ß-induced ADAMTS4 expression, activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), Akt, and NF-κB were analyzed by Western blotting. HMW-HA suppressed ADAMTS4 mRNA and protein expressions induced by IL-1ß. Pretreatment with the anti-CD44 monoclonal antibody recovered the inhibitory effect of HMW-HA on expression of ADAMTS4 mRNA induced by IL-1ß. Western blotting analysis revealed that IL-1ß-induced phosphorylation of p38 MAPK and JNK protein were diminished by HMW-HA. Furthermore, inhibition of the p38 MAPK and JNK pathways by chemical inhibitors suppressed ADAMTS4 mRNA expression stimulated by IL-1ß. These results suggest that HMW-HA plays an important role as a regulatory factor in synovial tissue inflammation.


Assuntos
Proteínas ADAM/metabolismo , Ácido Hialurônico/farmacologia , Pró-Colágeno N-Endopeptidase/metabolismo , Líquido Sinovial/efeitos dos fármacos , Sinovite/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/biossíntese , Proteína ADAMTS4 , Anticorpos Monoclonais , Linhagem Celular , Regulação para Baixo , Ativação Enzimática , Humanos , Receptores de Hialuronatos/imunologia , Interleucina-1beta/farmacologia , Interleucina-1beta/fisiologia , MAP Quinase Quinase 4/biossíntese , Peso Molecular , Pró-Colágeno N-Endopeptidase/antagonistas & inibidores , Pró-Colágeno N-Endopeptidase/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Líquido Sinovial/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA