Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8011): 402-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632412

RESUMO

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Assuntos
Proteína Morfogenética Óssea 2 , Interneurônios , Neocórtex , Rede Nervosa , Inibição Neural , Neurônios , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Neocórtex/citologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteína Smad1/metabolismo , Sinapses/metabolismo , Ácido Glutâmico/metabolismo
2.
Sci Rep ; 10(1): 10047, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572071

RESUMO

Parvalbumin (PV)-expressing interneurons (PV-INs) mediate well-timed inhibition of cortical principal neurons, and plasticity of these interneurons is involved in map remodeling of primary sensory cortices during critical periods of development. To assess whether bone morphogenetic protein (BMP) signaling contributes to the developmental acquisition of the synapse- and plasticity properties of PV-INs, we investigated conditional/conventional double KO mice of BMP-receptor 1a (BMPR1a; targeted to PV-INs) and 1b (BMPR1a/1b (c)DKO mice). We report that spike-timing dependent LTP at the synapse between PV-INs and principal neurons of layer 4 in the auditory cortex was absent, concomitant with a decreased paired-pulse ratio (PPR). On the other hand, baseline synaptic transmission at this connection, and action potential (AP) firing rates of PV-INs were unchanged. To explore possible gene expression targets of BMP signaling, we measured the mRNA levels of the BDNF receptor TrkB and of P/Q-type Ca2+ channel α-subunits, but did not detect expression changes of the corresponding genes in PV-INs of BMPR1a/1b (c)DKO mice. Our study suggests that BMP-signaling in PV-INs during and shortly after the critical period is necessary for the expression of LTP at PV-IN output synapses, involving gene expression programs that need to be addressed in future work.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Interneurônios/metabolismo , Metaloproteinases da Matriz/metabolismo , Parvalbuminas/metabolismo , Animais , Córtex Auditivo/metabolismo , Feminino , Técnicas de Inativação de Genes , Potenciação de Longa Duração , Masculino , Camundongos , Transdução de Sinais
3.
Neuron ; 102(2): 270-272, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30998895

RESUMO

Spatiotemporal regulation of neuronal gene expression is essential for proper functioning of neuronal circuits. In this issue of Neuron, Sharma et al. (2019) discover a dual role for Arnt2-NcoR2 protein complexes in the activity-dependent regulation of neuronal transcriptomes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neurônios , Translocador Nuclear Receptor Aril Hidrocarboneto , Expressão Gênica
4.
Biomater Sci ; 6(7): 1777-1790, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29770392

RESUMO

Promotion of neurite outgrowth is an important limiting step for regeneration in nerve injury and depends strongly on the local expression of nerve growth factor (NGF). The rational design of bioactive materials is a promising approach for the development of novel therapeutic methods for nerve regeneration, and biomaterials capable of presenting NGF to nerve cells are especially suitable for this purpose. In this study, we show bioactive peptide amphiphile (PA) nanofibers capable of promoting neurite outgrowth by displaying high density binding epitopes for NGF. A high-affinity NGF-binding sequence was identified by phage display and combined with a beta-sheet forming motif to produce a self-assembling PA molecule. The bioactive nanofiber had higher affinity for NGF compared to control nanofibers and in vitro studies revealed that the NGF binding peptide amphiphile nanofibers (NGFB-PA nanofiber) significantly promote the neurite outgrowth of PC-12 cells. In addition, the nanofibers induced differentiation of PC-12 cells into neuron-like cells by enhancing NGF/high-activity NGF receptor (TrkA) interactions and activating MAPK pathway elements. The NGFB-PA nanofiber was further shown as a promising material to support axonal outgrowth from primary sensory neurons. These materials will pave the way for the development of new therapeutic agents for peripheral nervous system injuries.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Nanofibras/química , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nanofibras/ultraestrutura , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Biblioteca de Peptídeos , Peptídeos/síntese química , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptor trkA/genética , Receptor trkA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA