Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(17): 173001, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172243

RESUMO

To test bound-state quantum electrodynamics (BSQED) in the strong-field regime, we have performed high precision x-ray spectroscopy of the 5g-4f and 5f- 4d transitions (BSQED contribution of 2.4 and 5.2 eV, respectively) of muonic neon atoms in the low-pressure gas phase without bound electrons. Muonic atoms have been recently proposed as an alternative to few-electron high-Z ions for BSQED tests by focusing on circular Rydberg states where nuclear contributions are negligibly small. We determined the 5g_{9/2}- 4f_{7/2} transition energy to be 6297.08±0.04(stat)±0.13(syst) eV using superconducting transition-edge sensor microcalorimeters (5.2-5.5 eV FWHM resolution), which agrees well with the most advanced BSQED theoretical prediction of 6297.26 eV.

2.
Phys Rev Lett ; 127(5): 053001, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397250

RESUMO

We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kß x rays together with the hypersatellite K^{h}α x rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the L-shell electrons, accompanied by electron side feeding. Assisted by a simulation, these data clearly reveal the electronic K- and L-shell hole production and their temporal evolution on the 10-20 fs scale during the muon cascade process.

3.
Fresenius J Anal Chem ; 370(7): 855-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11569864

RESUMO

A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.


Assuntos
Óxido de Alumínio/análise , Silício/análise , Espectrofotometria Atômica/métodos , Pós/química , Controle de Qualidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA