RESUMO
During the summer of 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. High-throughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via reverse transcriptase PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using random amplification of cDNA ends methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long, and they shared 99.9 to 100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kilodaltons [kDa]) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3/84.4% nt/aa polyprotein identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below-species-threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses, thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).
Assuntos
Catharanthus , Genoma Viral , Filogenia , Doenças das Plantas , Potyvirus , Potyvirus/genética , Potyvirus/classificação , Potyvirus/isolamento & purificação , Doenças das Plantas/virologia , Genoma Viral/genética , Catharanthus/virologia , Folhas de Planta/virologia , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral/genética , Variação Genética , Nicotiana/virologia , TexasRESUMO
Investigations conducted during the spring 2020 season to diagnose the associated viral agent of a severe mosaic disease of wheat in a Texas Panhandle field revealed the presence of wheat Eqlid mosaic virus (WEqMV; genus Tritimovirus, family Potyviridae) in the analyzed samples. The complete genome sequences of two WEqMV isolates were determined, and each was found to be 9,634 nucleotides (nt) in length (excluding the polyA tail) and to contain 5' and 3' untranslated regions of 135 nt and 169 nt, respectively, based on rapid amplification of cDNA ends (RACE) assays. Both sequences contained an open reading frame (ORF) of 9,330 nt encoding a polyprotein of 3,109 amino acids (aa). The ORF sequences of the two isolates were 100% identical to each other, but only 74.7% identical to that of the exemplar WEqMV-Iran isolate, with 85.7% aa sequence identity in the encoded polyprotein. The Texas WEqMV isolates also diverged significantly from WEqMV-Iran in the individual proteins at the nt and aa levels. This is the first report of WEqMV in the United States and the first report of this virus outside of Iran, indicating an expansion of its geographical range.
Assuntos
Vírus do Mosaico , Potyviridae , Texas , Triticum , Potyviridae/genética , Regiões 3' não Traduzidas/genética , Aminoácidos , Nucleotídeos , PoliproteínasRESUMO
Potato leafroll virus (PLRV) and Potato virus Y (PVY) are two important viruses causing serious potato yield losses in the North-east region and other planting areas in India. As a consequence, it is urgent to develop an efficient and quick method for the identification and diagnosis in the field. The results presented here showed that the reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was efficient and sensitive than reverse transcription-polymerase chain reaction (RT-PCR) for the detection of PLRV and PVY. The RT-LAMP primers specifically targeted PLRV and PVY (including PVYO, PVYN, and PVYNTN strains) and resulted in typical sigmoidal amplification curves. Ten-fold serial dilutions of PLRV and PVY total RNA indicated that RT-LAMP is faster and at least a hundred times more sensitive than RT-PCR in detecting both the viruses. Additionally, samples that RT-PCR could not detect at a diluted concentration of 10-3 and 10-4 ng/µl were identified by RT-LAMP. Thus, RT-LAMP offers many advantages over RT-PCR such as low cost and high accuracy, sensitivity, and specificity for the rapid diagnosis of plant virus diseases. In conclusion, the results highlighted the efficacy of the RT-LAMP method in quickly detecting PLRV and PVY in infected plants.