Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 144(3): 419-429, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049659

RESUMO

The MS blastomere produces one-third of the body wall muscles (BWMs) in the C. elegans embryo. MS-derived BWMs require two distinct cell-cell interactions, the first inhibitory and the second, two cell cycles later, required to overcome this inhibition. The inductive interaction is not required if the inhibitory signal is absent. Although the Notch receptor GLP-1 was implicated in both interactions, the molecular nature of the two signals was unknown. We now show that zygotically expressed MOM-2 (Wnt) is responsible for both interactions. Both the inhibitory and the activating interactions require precise spatiotemporal expression of zygotic MOM-2, which is dependent upon two distinct Notch signals. In a Notch mutant defective only in the inductive interaction, MS-derived BWMs can be restored by preventing zygotic MOM-2 expression, which removes the inhibitory signal. Our results suggest that the inhibitory interaction ensures the differential lineage specification of MS and its sister blastomere, whereas the inductive interaction promotes the expression of muscle-specifying genes by modulating TCF and ß-catenin levels. These results highlight the complexity of cell fate specification by cell-cell interactions in a rapidly dividing embryo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Notch/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Blastômeros/citologia , Blastômeros/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indução Embrionária/genética , Indução Embrionária/fisiologia , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Músculos/embriologia , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição TCF/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Zigoto/citologia , Zigoto/metabolismo , beta Catenina/metabolismo
2.
Crit Rev Biochem Mol Biol ; 50(5): 393-426, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26182352

RESUMO

Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.


Assuntos
Carcinogênese/metabolismo , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo Mediador/metabolismo , Modelos Biológicos , Animais , Ciclina C/química , Quinase 8 Dependente de Ciclina/química , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Complexo Mediador/química , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Development ; 140(22): 4614-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24131629

RESUMO

The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3'UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they regulate these targets are less clear. These RBPs are translated in oocytes and localize to one or a few blastomeres in a spatially and temporally dynamic fashion unique for each protein and each blastomere. Here, we characterize the translational regulation of maternally supplied mom-2 mRNA, which encodes a Wnt ligand essential for two separate cell-cell interactions in early embryos. A GFP reporter that includes only the mom-2 3'UTR is translationally repressed properly in oocytes and early embryos, and then correctly translated only in the known Wnt signaling cells. We show that the spatiotemporal translation pattern of this reporter is regulated combinatorially by a set of nine maternally supplied RBPs. These nine proteins all directly bind the mom-2 3'UTR in vitro and function as positive or negative regulators of mom-2 translation in vivo. The net translational readout for the mom-2 3'UTR reporter is determined by competitive binding between positive- and negative-acting RBPs for the 3'UTR, along with the distinct spatiotemporal localization patterns of these regulators. We propose that the 3'UTR of maternal mRNAs contains a combinatorial code that determines the topography of associated RBPs, integrating positive and negative translational inputs.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas/genética , RNA Mensageiro Estocado/genética , Proteínas Wnt/genética , Regiões 3' não Traduzidas/genética , Animais , Ligação Competitiva , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Oócitos/metabolismo , Fenótipo , Ligação Proteica/genética , Transporte Proteico/genética , Transporte de RNA/genética , RNA Mensageiro Estocado/metabolismo , Transdução de Sinais/genética , Proteínas Wnt/metabolismo
4.
J Neurosci ; 33(23): 9716-24, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23739968

RESUMO

In Caenorhabditis elegans, satiety quiescence mimics behavioral aspects of satiety and postprandial sleep in mammals. On the basis of calcium-imaging, genetics, and behavioral studies, here we report that a pair of amphid neurons, ASI, is activated by nutrition and regulates worms' behavioral states specifically promoting satiety quiescence; ASI inhibits the switch from quiescence to dwelling (a browsing state) and accelerates the switch from dwelling to quiescence. The canonical TGFß pathway, whose ligand is released from ASI, regulates satiety quiescence. The mutants of a ligand, a receptor and SMADs in the TGFß pathway all eat more and show less quiescence than wild-type. The TGFß receptor in downstream neurons RIM and RIC is sufficient for worms to exhibit satiety quiescence, suggesting neuronal connection from ASI to RIM and RIC is essential for feeding regulation through the TGFß pathway. ASI also regulates satiety quiescence partly through cGMP signaling; restoring cGMP signaling in ASI rescues the satiety quiescence defect of cGMP signaling mutants. From these results, we propose that TGFß and cGMP pathways in ASI connect nutritional status to promotion of satiety quiescence, a sleep-like behavioral state.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Ingestão de Alimentos/fisiologia , Proteínas Quinases/fisiologia , Saciação/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Animais Geneticamente Modificados , GMP Cíclico/fisiologia , Atividade Motora/fisiologia , Fator de Crescimento Transformador beta/fisiologia
5.
Dev Biol ; 363(2): 388-98, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22265679

RESUMO

In C. elegans embryos, transcriptional repression in germline blastomeres requires PIE-1 protein. Germline blastomere-specific localization of PIE-1 depends, in part, upon regulated degradation of PIE-1 in somatic cells. We and others have shown that the temporal and spatial regulation of PIE-1 degradation is controlled by translation of the substrate-binding subunit, ZIF-1, of an E3 ligase. We now show that ZIF-1 expression in embryos is regulated by five maternally-supplied RNA-binding proteins. POS-1, MEX-3, and SPN-4 function as repressors of ZIF-1 expression, whereas MEX-5 and MEX-6 antagonize this repression. All five proteins bind directly to the zif-1 3' UTR in vitro. We show that, in vivo, POS-1 and MEX-5/6 have antagonistic roles in ZIF-1 expression. In vitro, they bind to a common region of the zif-1 3' UTR, with MEX-5 binding impeding that by POS-1. The region of the zif-1 3' UTR bound by MEX-5/6 also partially overlaps with that bound by MEX-3, consistent with their antagonistic functions on ZIF-1 expression in vivo. Whereas both MEX-3 and SPN-4 repress ZIF-1 expression, neither protein alone appears to be sufficient, suggesting that they function together in ZIF-1 repression. We propose that MEX-3 and SPN-4 repress ZIF-1 expression exclusively in 1- and 2-cell embryos, the only period during embryogenesis when these two proteins co-localize. As the embryo divides, ZIF-1 continues to be repressed in germline blastomeres by POS-1, a germline blastomere-specific protein. MEX-5/6 antagonize repression by POS-1 and MEX-3, enabling ZIF-1 expression in somatic blastomeres. We propose that ZIF-1 expression results from a net summation of complex positive and negative translational regulation by 3' UTR-binding proteins, with expression in a specific blastomere dependent upon the precise combination of these proteins in that cell.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Transporte/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Blastômeros/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Ligação Proteica
6.
Genetics ; 198(4): 1513-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261697

RESUMO

The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas do Ovo/metabolismo , Regulação da Expressão Gênica , Oogênese , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Feminino , Meiose , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA