Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 205(6): 1678-1694, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32769120

RESUMO

The classical and lectin pathways of the complement system are important for the elimination of pathogens and apoptotic cells and stimulation of the adaptive immune system. Upon activation of these pathways, complement component C4 is proteolytically cleaved, and the major product C4b is deposited on the activator, enabling assembly of a C3 convertase and downstream alternative pathway amplification. Although excessive activation of the lectin and classical pathways contributes to multiple autoimmune and inflammatory diseases and overexpression of a C4 isoform has recently been linked to schizophrenia, a C4 inhibitor and structural characterization of the convertase formed by C4b is lacking. In this study, we present the nanobody hC4Nb8 that binds with picomolar affinity to human C4b and potently inhibits in vitro complement C3 deposition through the classical and lectin pathways in human serum and in mouse serum. The crystal structure of the C4b:hC4Nb8 complex and a three-dimensional reconstruction of the C4bC2 proconvertase obtained by electron microscopy together rationalize how hC4Nb8 prevents proconvertase assembly through recognition of a neoepitope exposed in C4b and reveals a unique C2 conformation compared with the alternative pathway proconvertase. On human induced pluripotent stem cell-derived neurons, the nanobody prevents C3 deposition through the classical pathway. Furthermore, hC4Nb8 inhibits the classical pathway-mediated immune complex delivery to follicular dendritic cells in vivo. The hC4Nb8 represents a novel ultrahigh-affinity inhibitor of the classical and lectin pathways of the complement cascade under both in vitro and in vivo conditions.


Assuntos
Convertases de Complemento C3-C5 da Via Clássica/metabolismo , Complemento C3/metabolismo , Complemento C4b/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Esquizofrenia/metabolismo , Anticorpos de Domínio Único/metabolismo , Animais , Afinidade de Anticorpos , Complexo Antígeno-Anticorpo/metabolismo , Diferenciação Celular , Células Cultivadas , Ativação do Complemento , Complemento C4b/genética , Complemento C4b/imunologia , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Regulação para Cima
2.
EMBO Mol Med ; 15(4): e16422, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36799046

RESUMO

The complement system which is part of the innate immune response against invading pathogens represents a powerful mechanism for killing of infected cells. Utilizing direct complement recruitment for complement-mediated elimination of HIV-1-infected cells is underexplored. We developed a novel therapeutic modality to direct complement activity to the surface of HIV-1-infected cells. This bispecific complement engager (BiCE) is comprised of a nanobody recruiting the complement-initiating protein C1q, and single-chain variable fragments of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope (Env) protein. Here, we show that two anti-HIV BiCEs targeting the V3 loop and the CD4 binding site, respectively, increase C3 deposition and mediate complement-dependent cytotoxicity (CDC) of HIV-1 Env-expressing Raji cells. Furthermore, anti-HIV BiCEs trigger complement activation on primary CD4 T cells infected with laboratory-adapted HIV-1 strain and facilitates elimination of HIV-1-infected cells over time. In summary, we present a novel approach to direct complement deposition to the surface of HIV-1-infected cells leading to complement-mediated killing of these cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Neutralizantes , Ativação do Complemento , Linfócitos T CD4-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA