Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905023

RESUMO

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.

2.
BMC Genomics ; 20(1): 47, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651090

RESUMO

BACKGROUND: Bloodstream malaria parasites require Ca++ for their development, but the sites and mechanisms of Ca++ utilization are not well understood. We hypothesized that there may be differences in Ca++ uptake or utilization by genetically distinct lines of P. falciparum. These differences, if identified, may provide insights into molecular mechanisms. RESULTS: Dose response studies with the Ca++ chelator EGTA (ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid) revealed stable differences in Ca++ requirement for six geographically divergent parasite lines used in previous genetic crosses, with the largest difference seen between the parents of the HB3 x Dd2 cross. Genetic mapping of Ca++ requirement yielded complex inheritance in 34 progeny clones with a single significant locus on chromosome 7 and possible contributions from other loci. Although encoded by a gene in the significant locus and a proposed Ca++ target, PfCRT (P. falciparum chloroquine resistance transporter), the primary determinant of clinical resistance to the antimalarial drug chloroquine, does not appear to contribute to this quantitative trait. Stage-specific application of extracellular EGTA also excluded determinants associated with merozoite egress and erythrocyte reinvasion. CONCLUSIONS: We have identified differences in Ca++ utilization amongst P. falciparum lines. These differences are under genetic regulation, segregating as a complex trait in genetic cross progeny. Ca++ uptake and utilization throughout the bloodstream asexual cycle of malaria parasites represents an unexplored target for therapeutic intervention.


Assuntos
Cálcio/metabolismo , Loci Gênicos , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Animais , Cruzamentos Genéticos , Ácido Egtázico/farmacologia , Feminino , Estudos de Associação Genética , Haplótipos/genética , Padrões de Herança/genética , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Merozoítos/efeitos dos fármacos , Merozoítos/metabolismo , Parasitos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/metabolismo
3.
J Biol Inorg Chem ; 18(7): 779-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23881220

RESUMO

In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium-ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes-cis,fac-[Ru(II)Cl2(DMSO)3(KTZ)] (1) and cis-[Ru(II)Cl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2'-bipyridine)-and four organometallic compounds-[Ru(II)(η(6)-p-cymene)Cl2(KTZ)] (3), [Ru(II)(η(6)-p-cymene)(en)(KTZ)][BF4]2 (4), [Ru(II)(η(6)-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [Ru(II)(η(6)-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with Ru(II) in compounds 3-5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3-5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.


Assuntos
Cetoconazol/química , Leishmania major/efeitos dos fármacos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos , Compostos Organometálicos/síntese química , Compostos Organometálicos/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade
4.
Cell Host Microbe ; 17(6): 811-819, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26048136

RESUMO

Type I interferons (IFNs) are critical mediators of antiviral defense, but their elicitation by bacterial pathogens can be detrimental to hosts. Many intracellular bacterial pathogens, including Mycobacterium tuberculosis, induce type I IFNs following phagosomal membrane perturbations. Cytosolic M. tuberculosis DNA has been implicated as a trigger for IFN production, but the mechanisms remain obscure. We report that the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS), is required for activating IFN production via the STING/TBK1/IRF3 pathway during M. tuberculosis and L. pneumophila infection of macrophages, whereas L. monocytogenes short-circuits this pathway by producing the STING agonist, c-di-AMP. Upon sensing cytosolic DNA, cGAS also activates cell-intrinsic antibacterial defenses, promoting autophagic targeting of M. tuberculosis. Importantly, we show that cGAS binds M. tuberculosis DNA during infection, providing direct evidence that this unique host-pathogen interaction occurs in vivo. These data uncover a mechanism by which IFN is likely elicited during active human infections.


Assuntos
DNA Bacteriano/metabolismo , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Mycobacterium tuberculosis/genética , Nucleotidiltransferases/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Autofagia/fisiologia , Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Feminino , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mycobacterium tuberculosis/patogenicidade , Nucleotidiltransferases/genética , Tuberculose/microbiologia
5.
Nat Cell Biol ; 20(1): 2-3, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269950
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA