Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cytokine ; 179: 156621, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648682

RESUMO

Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.


Assuntos
Doença de Chagas , Leucócitos Mononucleares , Microalgas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Microalgas/química , Extratos Vegetais/farmacologia , Citocinas/metabolismo
2.
Exp Parasitol ; 247: 108478, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36731642

RESUMO

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi (T. cruzi), affects millions of people worldwide. Polymerase Chain Reaction (PCR) and real-time quantitative PCR (qPCR) have been used as tools to monitor parasitic levels in the bloodstream of individuals exposed to infection, thus enabling the monitoring of relapses and the effectiveness of therapy, for example. The aim of this study was to evaluate the TcSAT-IAM system, developed by our research group, on samples from patients with suspected Chagas disease infection. Initially, primer systems were developed for the detection of the nuclear DNA (SAT-DNA) from T. cruzi (TcSAT-IAM). The Cruzi system, predicted in the literature, and TcSAT-IAM were then evaluated in relation to their analytical sensitivity, specificity and efficiency. Afterwards, the applicability of the qPCR technique using both systems (separately) for the diagnosis of acute CD was evaluated in samples from 77 individuals exposed to the outbreak that occurred in Pernambuco-Brazil, relating the results obtained to those of the classical diagnostic methods recommended for this stage of the infection. TcSAT-IAM and Cruzi had a detection limit of 1 fg of target DNA (0,003 parasites). Thirty-eight cases were recorded, 28 by laboratory criteria and 10 by clinical and epidemiological criteria. Blood samples from 77 subjects were submitted to qPCR by both systems, reaching an agreement of 89.61% between them. After analyzes between systems and diagnostic criteria, the TcSAT-IAM showed sensitivity and specificity of 52.36% (CI 37.26-67.52) and 92.31% (CI 79.68-97.35), respectively, accuracy of 72.73% and moderate agreement. The TcSAT-IAM showed an accuracy of 72.58% and 75% in relation to parasitological and serological tests (IgM anti-T. cruzi), respectively. Therefore, quantitative PCR should be incorporated into the diagnosis of suspected acute cases of Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Brasil/epidemiologia , Patologia Molecular , DNA de Protozoário/genética , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/tratamento farmacológico , Trypanosoma cruzi/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Surtos de Doenças
3.
Mem Inst Oswaldo Cruz ; 118: e220295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878830

RESUMO

BACKGROUND: Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE: To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS: The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS: We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION: Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Interleucina-6 , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tecido Adiposo , Adipócitos , Diferenciação Celular , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
4.
Front Immunol ; 15: 1280877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533504

RESUMO

Background/Introduction: Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods: We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results: Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion: Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.


Assuntos
Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Interleucina-8 , Leucócitos Mononucleares , Fator D do Complemento , Interleucina-2/uso terapêutico , Tecido Adiposo , Adipócitos , Fator de Necrose Tumoral alfa/uso terapêutico , Imunidade , Falha de Tratamento
5.
Mol Biochem Parasitol ; 258: 111618, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588892

RESUMO

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.


Assuntos
Aciltransferases , Tecido Adiposo , Ácido Graxo Sintase Tipo I , Leucócitos Mononucleares , Lipase , Trypanosoma cruzi , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/parasitologia , Tecido Adiposo/parasitologia , Tecido Adiposo/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Lipase/genética , Lipase/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Carga Parasitária , Expressão Gênica , Células Cultivadas
6.
Immun Inflamm Dis ; 12(9): e1330, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39267468

RESUMO

INTRODUCTION: Chagas disease is caused by the protozoan Trypanosoma cruzi and is clinically divided into acute and chronic phases. Chronic Chagas cardiomyopathy is the most studied manifestation of the disease. Vitamin D deficiency has been suggested as a risk factor for cardiovascular disease. No studies demonstrate the action of this hormone in the cells of patients with chronic Chagas heart disease. OBJECTIVE: To evaluate the in vitro immunomodulatory effect of vitamin D on peripheral blood mononuclear cells of patients with the different chronic clinical forms of Chagas disease. Evaluating vitamin D's in vitro effect on blood cells by producing cytokines. METHODS: Thirteen patients of the undetermined form (IND), 13 of the mild cardiac form (CARD1) and 14 of the severe cardiac form (CARD2) of Chagas disease, and 12 with idiopathic heart disease (CARDid) were included. The cells obtained from peripheral blood were treated in vitro with vitamin D (1 × 10-7 M) for 24 h and cytokines were dosed in the culture supernatant. RESULTS: Although it was not possible to demonstrate statistically significant differences between the groups studied, our data showed that the cells treated with vitamin D modify (p < .05) the production of interferon-γ (IFN-γ) (decrease in IND), tumor necrosis factor-α (TNF-α) (decreased in CARD1 and CARDid), interleukin (IL)-6 (increased in all groups), and IL-10 (decreased in CARD1, CARD2, and CARDid) when compared to untreated cells. CONCLUSION: In vitro treatment with vitamin D distinctly modulated the production of cytokines by mononuclear cells of peripheral blood among patients with chronic and indeterminate cardiac clinical forms of Chagas disease.


Assuntos
Citocinas , Leucócitos Mononucleares , Vitamina D , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Vitamina D/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Citocinas/metabolismo , Adulto , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/imunologia , Doença Crônica , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Idoso , Células Cultivadas
7.
Nat Prod Res ; : 1-7, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661179

RESUMO

Due to the limitations of Chagas disease therapy, microalgae can be promising in the search of new trypanocidal compounds, since these organisms produce bioactive compounds with large pharmaceutical applications, including antiparasitic effects. In this work, trypanocidal activity of aqueous extract of Tetradesmus obliquus and, for the first time, aqueous extract of Chlorella vulgaris, were evaluated against trypomastigote forms of Trypanosoma cruzi. In addition, cytotoxic activity in Vero cells was evaluated. Our results showed that C. vulgaris and T. obliquus present trypanocidal activity (IC50 = 32.9 µg ml-1 and 36.4 µg ml-1, respectively), however, C. vulgaris did not present cytotoxic effects in Vero cells (CC50 > 600 µg ml-1) and displayed a higher selectivity against trypomastigotes forms of T. cruzi (SI > 18). Thus, microalgae extracts, such as aqueous extract of C. vulgaris, are promising potential candidates for the development of natural antichagasic drugs.

8.
Immunobiology ; 227(1): 152166, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936965

RESUMO

Soluble TNF receptors (sTNFR1 and sTNFR2) are natural endogenous inhibitors of TNF and are elevated in inflammatory, autoimmune, and chronic degenerative diseases. In Chagas disease, pleiotropic cytokine TNF is considered key in immunopathology. Thus, we aimed to evaluate the levels of TNF, sTNFR1, and sTNFR2 in the serum of patients with chronic Chagas disease. TNF and its soluble receptors were quantified using Cytometric Bead Array in the serum of 132 patients, of which 51 had the indeterminate form (IND), 39 the mild cardiac form (CARD 1), 42 the severe cardiac form (CARD 2), and 20 non-infected individuals (NI). The results indicate that the soluble receptors may regulate TNF in Chagas disease, as their leves were higher in T. cruzi-infected individuals when compared to non-infected individuals. We found a moderate negative correlation between sTNFR1 and TNF in individuals with the IND form, suggesting a relationship with non-progression to more severe forms, such as heart disease. sTNFR1 and sTNFR2 were increased in all clinical forms, but with a moderate positive correlation in more severe patients (r = 0.50 and p = 0.0005). TNF levels showed no statistical differences in the groups of patients. These findings suggest the importance of the endogenous balance of the levels of soluble TNF receptors in the protection and balance in patients with chronic Chagas disease, besides revealing the immunological complexity in chronic T. cruzi-infected individuals.


Assuntos
Doença de Chagas , Doença Crônica , Citocinas , Humanos , Receptores do Fator de Necrose Tumoral
9.
Antibiotics (Basel) ; 9(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823803

RESUMO

Trypanosoma cruzi causes the lethal Chagas disease, which is endemic in Latin America. Flowers of Moringa oleifera (Moringaceae) express a trypsin inhibitor (MoFTI) whose toxicity to T. cruzi trypomastigotes was previously reported. Here, we studied the effects of MoFTI on the viability of human peripheral blood mononuclear cells (PBMCs) as well as on the production of cytokines and nitric oxide (NO) by T. cruzi-infected PBMCs. Incubation with MoFTI (trypsin inhibitory activity: 62 U/mg) led to lysis of trypomastigotes (LC50 of 43.5 µg/mL) but did not affect the viability of PBMCs when tested at concentrations up to 500 µg/mL. A selectivity index > 11.48 was determined. When T. cruzi-infected PBMCs were treated with MoFTI (43.5 or 87.0 µg/mL), the release of the pro-inflammatory cytokine TNF-α and INF-γ, as well as of NO, was stimulated. The release of the anti-inflammatory cytokine IL-10 also increased. In conclusion, the toxicity to T. cruzi and the production of IL-10 by infected PBMCs treated with MoFTI suggest that this molecule may be able to control parasitemia while regulating the inflammation, preventing the progress of Chagas disease. The data reported here stimulate future investigations concerning the in vivo effects of MoFTI on immune response in Chagas disease.

10.
Mem. Inst. Oswaldo Cruz ; 118: e220295, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521239

RESUMO

BACKGROUND Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA