Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 207: 111305, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32942101

RESUMO

Poultry litter is one of the main sources of fluoroquinolones (FQs) in agricultural soils. In this study, our main goal was to investigate FQ-contaminated poultry litter effects on Eisenia andrei earthworms. To achieve this, acute and chronic tests covered several endpoints, such as avoidance, biomass, lethality, reproduction and changes to immune cells. FQs (enrofloxacin and ciprofloxacin) were determined in a poultry litter sample through high performance liquid chromatography with a fluorescence detector. The avoidance test indicates that poultry litter strongly repels earthworms, even at the lowest concentration (50 g kg-1). In the acute test, the lethal concentration of poultry litter to 50% of the earthworms (LC50), was estimated at 28.5 g kg-1 and a significant biomass loss (p < 0.05) occurred at 40 g kg-1. In the chronic test, a significant reproduction effect was observed at 20 g kg-1. Cell typing, density and feasibility indicated significant effects ranging from 5 to 20 g kg-1. A high risk quotient was estimated based on recommended poultry litter applications in field studies. Although FQ contamination in poultry litter and soils has been widely reported in previous studies, this is, to the best of our knowledge, the first toxicological assessment concerning earthworms exposed to FQ-contaminated poultry litter.


Assuntos
Fluoroquinolonas/toxicidade , Oligoquetos/efeitos dos fármacos , Aves Domésticas , Poluentes do Solo/toxicidade , Solo/química , Resíduos Sólidos/análise , Agricultura , Animais , Biomassa , Fluoroquinolonas/análise , Dose Letal Mediana , Oligoquetos/crescimento & desenvolvimento , Reprodução/efeitos da radiação , Poluentes do Solo/análise , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
2.
Environ Pollut ; 267: 115570, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32916435

RESUMO

Triclocarban (TCC) is a contaminant of emerging concern widely applied as an antimicrobial in personal care products and introduced into the terrestrial environment through the application of biosolids (i.e., treated sewage sludge) in agriculture. Displaying the potential to bioaccumulate in the food chain and a high half-life in the soil, the presence of this compound in the environment may lead to potential ecological risks. In this context, TCC toxicity assessments in Eisenia andrei earthworms were carried out through acute, avoidance and chronic tests following cytotoxicity, antioxidant system, i.e. acatalase (CAT), glutathione-S-transferase (GST), glutathione (GSH), lipid peroxidation (LPO), and DNA damage (comet assay) evaluations. An LC50 of 3.3 ± 1.6 mg cm-2 in the acute contact test and an EC50 of 1.92 ± 0.31 mg kg-1 in the avoidance test during 72 h and 48 h, respectively, were obtained. The behavioral test indicates earthworm avoidance from 15.0 mg kg-1 of TCC. During chronic soil exposure, a 44% reduction in earthworm cell viability was observed after 14 days of exposure to 10 mg kg-1 TCC, while an increase in the percentage of amoebocyte cells also ocurred. Chronic exposure to TCC led to reduced CAT and GST activities, decreased GSH levels and increased LPO in exposed organisms. DNA damage was observed after 45 days from a 1 mg kg-1 dose of TCC. Therefore, TCC exhibits toxicological potential to Eisenia andrei earthworms, mainly during long-term exposures. This study provides mechanistic earthworm information towards understanding the environmental and human health implications of TCC exposure and draws attention to correct biosolid management.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Carbanilidas , Dano ao DNA , Humanos , Estresse Oxidativo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA