Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002283, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37699055

RESUMO

Photoperiod is an annual cue measured by biological systems to align growth and reproduction with the seasons. In plants, photoperiodic flowering has been intensively studied for over 100 years, but we lack a complete picture of the transcriptional networks and cellular processes that are photoperiodic. We performed a transcriptomics experiment on Arabidopsis plants grown in 3 different photoperiods and found that thousands of genes show photoperiodic alteration in gene expression. Gene clustering, daily expression integral calculations, and cis-element analysis then separate photoperiodic genes into co-expression subgroups that display 19 diverse seasonal expression patterns, opening the possibility that many photoperiod measurement systems work in parallel in Arabidopsis. Then, functional enrichment analysis predicts co-expression of important cellular pathways. To test these predictions, we generated a comprehensive catalog of genes in the phenylpropanoid biosynthesis pathway, overlaid gene expression data, and demonstrated that photoperiod intersects with 2 major phenylpropanoid pathways differentially, controlling flavonoids but not lignin. Finally, we describe the development of a new app that visualizes photoperiod transcriptomic data for the wider community.


Assuntos
Arabidopsis , Fotoperíodo , Arabidopsis/genética , Estações do Ano , Análise por Conglomerados , Transcriptoma/genética
2.
BBA Adv ; 4: 100111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075469

RESUMO

Global warming is caused by human activity, such as the burning of fossil fuels, which produces high levels of greenhouse gasses. As a consequence, climate change impacts all organisms and the greater ecosystem through changing conditions from weather patterns to the temperature, pH and salt concentrations found in waterways and soil. These environmental changes fundamentally alter many parameters of the living world, from the kinetics of chemical reactions and cellular signaling pathways to the accumulation of unforeseen chemicals in the environment, the appearance and dispersal of new diseases, and the availability of traditional foods. Some organisms adapt to extremes, while others cannot. This article asks five questions that prompt us to consider the foundational knowledge that biochemistry can bring to the table as we meet the challenge of climate change. We approach climate change from the molecular point of view, identifying how cells and organisms - from microbes to plants and animals - respond to changing environmental conditions. To embrace the concept of "one health" for all life on the planet, we argue that we must leverage biochemistry, cell biology, molecular biophysics and genetics to fully understand the impact of climate change on the living world and to bring positive change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA