Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0197224, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787564

RESUMO

The spatial distributions of organism abundance and diversity are often heterogeneous. This includes the sub-centimetre distributions of microbes, which have 'hotspots' of high abundance, and 'coldspots' of low abundance. Previously we showed that 300 µl abundance hotspots, coldspots and background regions were distinct at all taxonomic levels. Here we build on these results by showing taxonomic micropatches within these 300 µl microscale hotspots, coldspots and background regions at the 1 µl scale. This heterogeneity among 1 µl subsamples was driven by heightened abundance of specific genera. The micropatches were most pronounced within hotspots. Micropatches were dominated by Pseudomonas, Bacteroides, Parasporobacterium and Lachnospiraceae incertae sedis, with Pseudomonas and Bacteroides being responsible for a shift in the most dominant genera in individual hotspot subsamples, representing up to 80.6% and 47.3% average abundance, respectively. The presence of these micropatches implies the ability these groups have to create, establish themselves in, or exploit heterogeneous microenvironments. These genera are often particle-associated, from which we infer that these micropatches are evidence for sub-millimetre aggregates and the aquatic polymer matrix. These findings support the emerging paradigm that the microscale distributions of planktonic microbes are numerically and taxonomically heterogeneous at scales of millimetres and less. We show that microscale microbial hotspots have internal structure within which specific local nutrient exchanges and cellular interactions might occur.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Evolução Biológica , RNA Ribossômico 16S/genética , Rios/microbiologia , Microbiologia da Água , Bactérias/genética , Biologia Computacional/métodos , Rios/virologia
2.
Microbiologyopen ; 5(6): 1071-1084, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27506856

RESUMO

Viral communities are important for ecosystem function as they are involved in critical biogeochemical cycles and controlling host abundance. This study investigates riverine viral communities around a small rural town that influences local water inputs. Myoviridae, Siphoviridae, Phycodnaviridae, Mimiviridae, Herpesviridae, and Podoviridae were the most abundant families. Viral species upstream and downstream of the town were similar, with Synechoccocus phage, salinus, Prochlorococcus phage, Mimivirus A, and Human herpes 6A virus most abundant, contributing to 4.9-38.2% of average abundance within the metagenomic profiles, with Synechococcus and Prochlorococcus present in metagenomes as the expected hosts for the phage. Overall, the majority of abundant viral species were or were most similar to those of marine origin. At over 60 km to the river mouth, the presence of marine communities provides some support for the Baas-Becking hypothesis "everything is everywhere, but, the environment selects." We conclude marine microbial species may occur more frequently in freshwater systems than previously assumed, and hence may play important roles in some freshwater ecosystems within tens to a hundred kilometers from the sea.


Assuntos
Água Doce/virologia , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/virologia , Vírus Gigantes/genética , Metagenoma/genética , Metagenômica , Microbiota , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA