Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Rep Prog Phys ; 81(9): 096501, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059351

RESUMO

Dislocations in molecular crystals remain terra incognita. Owing to the complexity of molecular structure, dislocations in molecular crystals can be difficult to understand using only the foundational concepts devised over decades for hard materials. Herein, we review the generation, structure, and physicochemical consequences of dislocations in molecular crystals. Unlike metals, ceramics, and semiconductors, molecular crystals are often characterized by flexible building units of low symmetry, thereby limiting analysis, complicating modeling, and prompting new approaches to elucidate their role in crystallography from growth to mechanics. Such considerations affect applications ranging from plastic electronics and mechanical actuators to the tableting of pharmaceuticals.

2.
J Phys Chem A ; 115(40): 11001-7, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21882853

RESUMO

We describe three new strategies for determining heterogeneous reaction rates using photomicroscopy to measure the rate of retreat of metal surfaces: (i) spheres in a stirred solution, (ii) microscopic powder in an unstirred solution, and (iii) spheres on a rotating shaft. The strategies are applied to indium-mediated allylation (IMA), which is a powerful tool for synthetic chemists because of its stereoselectivity, broad applicability, and high yields. The rate-limiting step of IMA, reaction of allyl halides at indium metal surfaces, is shown to be fast, with a minimum value of the heterogeneous rate constant of 1 × 10(-2) cm/s, an order of magnitude faster than the previously determined minimum value. The strategies described here can be applied to any reaction in which the surface is retreating or advancing, thereby broadening the applicability of photomicroscopy to measuring heterogeneous reaction kinetics.


Assuntos
Compostos Alílicos/síntese química , Índio/química , Compostos Organometálicos/química , Compostos Alílicos/química , Hidrocarbonetos Halogenados/química , Estrutura Molecular , Compostos Organometálicos/síntese química , Tamanho da Partícula , Fotomicrografia , Soluções , Estereoisomerismo , Propriedades de Superfície
3.
J Phys Chem A ; 113(12): 2801-8, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19296707

RESUMO

Indium-mediated allylation provides remarkable stereo- and regioselectivity, and it proceeds easily and in high yield in aqueous solutions. In spite of its widespread use, there have been few fundamental studies of this reaction. We have developed a photomicrographic technique for measuring rates of reaction of allyl halides at indium surfaces, and we describe the mathematical model for discriminating between diffusion and kinetic control. The measurements demonstrate that this reaction is diffusion controlled, and the minimum value of the heterogeneous rate constant is 1 x 10(-3) cm s(-1). These results broaden the applicability of photomicroscopy for measuring heterogeneous rates of reactions that result in consumption of solid metals.

4.
J Phys Chem Lett ; 7(16): 3112-7, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27478906

RESUMO

Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA