Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408723

RESUMO

Honey is a natural product that is considered globally one of the most widely important foods. Various studies on authenticity detection of honey have been fulfilled using visible and near-infrared (Vis-NIR) spectroscopy techniques. However, there are limited studies on stingless bee honey (SBH) despite the increase of market demand for this food product. The objective of this work was to present the potential of Vis-NIR absorbance spectroscopy for profiling, classifying, and quantifying the adulterated SBH. The SBH sample was mixed with various percentages (10−90%) of adulterants, including distilled water, apple cider vinegar, and high fructose syrup. The results showed that the region at 400−1100 nm that is related to the color and water properties of the samples was effective to discriminate and quantify the adulterated SBH. By applying the principal component analysis (PCA) on adulterants and honey samples, the PCA score plot revealed the classification of the adulterants and adulterated SBHs. A partial least squares regression (PLSR) model was developed to quantify the contamination level in the SBH samples. The general PLSR model with the highest coefficient of determination and lowest root means square error of cross-validation (RCV2=0.96 and RMSECV=5.88 %) was acquired. The aquaphotomics analysis of adulteration in SBH with the three adulterants utilizing the short-wavelength NIR region (800−1100 nm) was presented. The structural changes of SBH due to adulteration were described in terms of the changes in the water molecular matrix, and the aquagrams were used to visualize the results. It was revealed that the integration of NIR spectroscopy with aquaphotomics could be used to detect the water molecular structures in the adulterated SBH.


Assuntos
Mel , Animais , Abelhas , Contaminação de Alimentos/análise , Mel/análise , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Água/análise
2.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925576

RESUMO

Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.


Assuntos
Arecaceae , Ganoderma , Doenças das Plantas , Espectroscopia de Luz Próxima ao Infravermelho
3.
Sensors (Basel) ; 19(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091779

RESUMO

Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes - including light-emitting diodes (LEDs), phototransistors-including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.


Assuntos
Óptica e Fotônica/tendências , Radiometria/tendências , Dosimetria Termoluminescente/tendências , Calibragem , Desenho de Equipamento , Humanos , Fótons , Doses de Radiação , Semicondutores
4.
J Multidiscip Healthc ; 17: 2409-2424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784380

RESUMO

As an alternative to task-based functional magnetic resonance imaging (T-fMRI), resting-state functional magnetic resonance imaging (Rs-fMRI) is suggested for preoperative mapping of patients with brain tumours, with an emphasis on treatment guidance and neurodegeneration prediction. A systematic review was conducted of 18 recent studies involving 1035 patients with brain tumours and Rs-fMRI protocols. This was accomplished by searching the electronic databases PubMed, Scopus, and Web of Science. For clinical benefit, we compared Rs-fMRI to standard T-fMRI and intraoperative direct cortical stimulation (DCS). The results of Rs-fMRI and T-fMRI were compared and their correlation with intraoperative DCS results was examined through a systematic review. Our exhaustive investigation demonstrated that Rs-fMRI is a dependable and sensitive preoperative mapping technique that detects neural networks in the brain with precision and identifies crucial functional regions in agreement with intraoperative DCS. Rs-fMRI comes in handy, especially in situations where T-fMRI proves to be difficult because of patient-specific factors. Additionally, our exhaustive investigation demonstrated that Rs-fMRI is a valuable tool in the preoperative screening and evaluation of brain tumours. Furthermore, its capability to assess brain function, forecast surgical results, and enhance decision-making may render it applicable in the clinical management of brain tumours.

5.
Sensors (Basel) ; 13(4): 4876-83, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584118

RESUMO

This study presents a novel application of near infrared (NIR) spectral linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2) = 0.724 and a root mean square error of prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.


Assuntos
Frutas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Modelos Lineares , Solubilidade
6.
Molecules ; 17(6): 7440-50, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22706373

RESUMO

Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.


Assuntos
Ácidos/química , Espectroscopia de Luz Próxima ao Infravermelho , Ácido Cítrico/química , Frutas/química , Concentração de Íons de Hidrogênio , Malatos/química , Oxalatos/química , Soluções , Tartaratos/química
7.
Materials (Basel) ; 15(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35454597

RESUMO

The aim of this study is to compare the optical responses of external beam therapy 3 (EBT3) films exposed to X-rays and solar ultraviolet rays (SUV-rays), as a dose control technique in the clinical sector for various radiation types, energies, and absorbed doses up to 4 Gy. In this study, EBT3 films with three different expiry dates were prepared and cut into pieces of size 2 by 2 cm2. The first group was exposed to 90 kVp X-rays, while the second group was exposed to the SUV-rays at noon. The analysis was performed using a visible Jaz spectrometer and an EPSON Perfection V370 Photo scanner to obtain the absorbance, the net reflective optical density (ROD) and the red-green-blue (RGB) values of the samples. The results have shown that spectroscopic measurements of the exposed expired EBT3 films with these radiation sources are able to produce primary peaks and secondary peaks at λ = 641.74 nm and λ = 585.98 nm for X-rays, and at λ = 637.93 nm and λ = 584.45 nm for SUV-rays, respectively. According to these findings, compared to 2021 films that expired shortly before the trial start date; 2018 films responded better to the absorbed dose than 2016 films when exposed to both X-ray and SUV-rays. In terms of energy dependence, the expired EBT3 2018 had the largest net ROD value. Using L*a*b* indices extracted from the RGB data, and despite that EBT3 films have expiry dates according to the manufacturer; all the films exhibited a substantial colour change, indicating that these films are still usable for clinical and research purposes.

8.
Sci Rep ; 12(1): 10549, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732668

RESUMO

Laser ablation synthesis in liquid solution (PLAL) is a green technique that allows for the physical formation of nanomaterials. This study indicates the preparation of stable gold nanoparticles (AuNPs) in Gum Arabic (GA) solution via laser ablation as a CT contrast agent. The optical properties were achieved using the absorption spectroscopic technique whereas the morphology and size distribution were investigated by TEM and ImageJ software. TEM image shows greater stability and spherical shape of GA-AuNPs with smaller size at 1.85 ± 0.99 nm compared to AuNPs without GA. The absorption spectrum of pure AuNPs has a lower absorption peak height in the visible range at λ = 521 nm, while the spectrum of GA-AuNPs has a higher plasmon peak height at λ = 514 nm with a blue shift towards lower wavelengths. The concentration of GA that dissolved in 10 mL of DI water via laser ablation is set at 20 mg. Increasing the number of pulses has only a minor effect on particle size distribution, which remains tiny in the nanometer range (less than 3 nm). For energies greater than 200 mJ, there is a blue shift toward shorter wavelengths. As the concentration of GA-AuNPs increases, the CT number is also increased indicating good image contrast. It can be concluded that there is a positive and significant influence of GA as a reducing agent for AuNPs, and a contrast agent for CT imaging which highlights its superiority in future medical applications.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Meios de Contraste , Ouro/química , Goma Arábica/química , Nanopartículas Metálicas/química , Tomografia Computadorizada por Raios X
9.
Phys Med Biol ; 66(8)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33725685

RESUMO

Light-emitting diodes (LEDs) could be a potential dosimetry candidate because they are radiation hard, spectrally selective, direct band gap, and low-cost devices. Thus, an LED-based detector prototype was designed and characterized for dosimetry. A 20 × 20 cm2array of surface mount device LED chips was sandwiched in photovoltaic mode between two intensifying screens to form a dosimetric system. The system was enclosed in a light-tight air cavity using black vinyl tape. The screens converted diagnostic x-ray beams into fluorescent blue light. LEDs, applied in detector mode, converted the fluorescent light into radiation-induced currents. A digital multimeter converted the analog currents into digital voltage signals. Prototype characterization was executed using (a) IEC 61267's RQR 7 (90 kVp) and RQR 8 (100 kVp) beam qualities, and (b) low (25 mAs) and high (80 mAs) beam quantities. A standard dosimeter probe was simultaneously exposed with the prototype to measure the prototype's absorbed dose. In all exposures, the x-ray beams were perpendicularly incident on both the dosimeter and prototype, at a fixed source to detector distance-60 cm. The LED array prototype's minimum detectable dose was 0.139 mGy, and the maximum dose implemented herein was ∼13 mGy. The prototype was 99.18% and 98.64% linearly sensitive to absorbed dose and tube current-time product (mAs), respectively. The system was ±4.69% energy, ±6.8% dose, and ±7.7% dose rate dependent. Two prototype data sets were 89.93% repeatable. We fabricated an ultrathin (5 mm), lightweight (130 g), and a relatively low-cost LED-based dosimetric prototype. The prototype executed a simple, efficient, and accurate real-time dosimetric mechanism. It could thus be an alternative to the current passive dosimetric systems.


Assuntos
Radiologia , Radiometria , Imagens de Fantasmas , Radiografia , Raios X
10.
Appl Radiat Isot ; 170: 109622, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33592486

RESUMO

This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.


Assuntos
Luz , Radiometria/métodos , Raios X
11.
Sensors (Basel) ; 9(10): 8311-35, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408507

RESUMO

Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

12.
Photodiagnosis Photodyn Ther ; 27: 380-384, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31301437

RESUMO

The objective of this research is to examine the relationship between the color changes of phenol red and the growth of cancer cells, i.e., HeLa and DU145 cells, over a specific period of time. Normal mouse skin fibroblasts (L929 cells) were used as a reference. In this research, the color changes of phenol red due to the acidification of the cell culture medium from the growth of the cells over a period of nine hours showed potential colorimetric characteristics of cancer cells. The color changes of phenol red were observed using visible absorbance spectroscopy. The transformation of the absorbance spectra into coefficients of determination against the examined range of wavelengths created a distinctive spectral signature that signifies phenol red discoloration in cancer and normal cell culture lines.


Assuntos
Colorimetria/métodos , Fenolsulfonaftaleína/farmacologia , Animais , Meios de Cultura , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Análise Espectral , Células Tumorais Cultivadas
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117241, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31216502

RESUMO

Cancer is increasing in incidence and the leading cause of death worldwide. Controlling and reducing cancer requires early detection and technique to accurately detect and quantify predictive biomarkers. Optical spectroscopy has shown promising non-destructive ability to display distinctive spectral characteristics between cancerous and normal tissues from different part of human organ. Nonetheless, not many information is available on spectroscopic properties of cancer cell lines. In this research, the visible-near infrared (VIS-NIR) absorbance spectroscopy measurement of cultured cervical cancer (HeLa) and prostate cancer cells (DU145) lines has been performed to develop spectral signature of cancer cells and to generate algorithm to quantify cancer cells. Spectroscopic measurement on mouse skin fibroblast (L929) was also taken for comparative purposes. In visible region, the raw cells' spectra do not produce any noticeable peak absorbance that provides information on color because the medium used for cells is colorless and transparent. NIR wavelength between 950 and 975 nm exhibit significant peak due to water absorbance by the medium. Development of spectral signature for the cells through the application of regression technique significantly enhances the diverse characteristics between L929, HeLa and DU145. The application of multiple linear regression allows high measurement accuracy of the cells with coefficient of determination above 0.94.


Assuntos
Neoplasias da Próstata/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Neoplasias do Colo do Útero/química , Algoritmos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Modelos Lineares , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico , Neoplasias do Colo do Útero/diagnóstico
14.
Dose Response ; 17(2): 1559325819855532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236089

RESUMO

The purpose of this study is to investigate the potentiality of Gafchromic external beam therapy 3 (EBT3) film to measure low dosage of solar ultraviolet (SUV; 0-10 600 mJ/cm2) and x-ray (0-750 mGy) radiation. In this experiment, 2 groups of EBT3 films were prepared with size 2 cm × 1 cm. The first group of films was exposed by incremental SUV dose in the middle of the day. The other group was irradiated by x-ray at 100 kVp, 100 mA, and 2 S of tube voltage, tube current, and exposure time, respectively. The measured SUV consists of 90% ultraviolet A (UVA) and 10% ultraviolet B. The film discoloration was represented by visible absorbance spectroscopy technique using Jaz spectrometer from Ocean Optics Inc. Simple linear regression produced high accuracy with coefficients of determination, r 2 of 0.9804 and root mean square error (RMSE) of 434.88 mJ/cm2 for the measurement of SUV dose. On the other hand, r 2 of 0.98 and RMSE of 31 mGy was produced for the measurement of x-ray dose. The application of multiple linear regression enhanced the measurement accuracy with R 2 of 99% and 99.7% and RMSE of 327.06 mJ/cm2 and 15.045 mGy for SUV and x-ray dose, respectively. The spectral analysis shows a promising measurement at selected wavelengths for SUV and x-ray dose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA