Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Metabolomics ; 17(3): 25, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594638

RESUMO

INTRODUCTION: Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES: We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS: In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS: We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION: Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.


Assuntos
Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Lipidômica/métodos , Lipídeos/análise , Animais , Antígenos CD , Biomarcadores , Laboratórios , Receptor de Insulina , Reprodutibilidade dos Testes
2.
PLoS Genet ; 14(7): e1007494, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30036395

RESUMO

Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Proteínas de Ciclo Celular/imunologia , Evolução Molecular , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/imunologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/imunologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Ligação Proteica/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
3.
BMC Biol ; 14(1): 104, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927209

RESUMO

BACKGROUND: Tribbles proteins are conserved pseudokinases that function to control kinase signalling and transcription in diverse biological processes. Abnormal function in human Tribbles has been implicated in a number of diseases including leukaemia, metabolic syndromes and cardiovascular diseases. Caenorhabditis elegans Tribbles NIPI-3 was previously shown to activate host defense upon infection by promoting the conserved PMK-1/p38 mitogen-activated protein kinase (MAPK) signalling pathway. Despite the prominent role of Tribbles proteins in many species, our knowledge of their mechanism of action is fragmented, and the in vivo functional relevance of their interactions with other proteins remains largely unknown. RESULTS: Here, by characterizing nipi-3 null mutants, we show that nipi-3 is essential for larval development and viability. Through analyses of genetic suppressors of nipi-3 null mutant lethality, we show that NIPI-3 negatively controls PMK-1/p38 signalling via transcriptional repression of the C/EBP transcription factor CEBP-1. We identified CEBP-1's transcriptional targets by ChIP-seq analyses and found them to be enriched in genes involved in development and stress responses. Unlike its cell-autonomous role in innate immunity, NIPI-3 is required in multiple tissues to control organismal development. CONCLUSIONS: Together, our data uncover an unprecedented crosstalk involving multiple tissues, in which NIPI-3 acts as a master regulator to inhibit CEBP-1 and the PMK-1/p38 MAPK pathway. In doing so, it keeps innate immunity in check and ensures proper organismal development.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas Quinases/genética , Alelos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Caenorhabditis elegans/genética , Sobrevivência Celular , Mapeamento Cromossômico , Clonagem Molecular , Repressão Epigenética , Regulação da Expressão Gênica , Imunidade Inata , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
BMC Biol ; 14: 35, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27129311

RESUMO

BACKGROUND: Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS: We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS: Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Animais , Caenorhabditis elegans/microbiologia , Clonagem Molecular , Epiderme/imunologia , Estudos de Associação Genética , Genoma Helmíntico , Interações Hospedeiro-Patógeno , Hypocreales , Mitocôndrias/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Interferência de RNA , Transdução de Sinais , Regulação para Cima
6.
Mol Cell Proteomics ; 12(9): 2587-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23722234

RESUMO

Protein-protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRß, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.


Assuntos
Domínios PDZ , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Movimento Celular , Embrião não Mamífero/metabolismo , Ensaio de Imunoadsorção Enzimática , Fluorescência , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Morfogênese , Proteínas Oncogênicas Virais/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Reprodutibilidade dos Testes , Nexinas de Classificação/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus/embriologia , Xenopus/metabolismo
7.
Elife ; 122023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913486

RESUMO

Apical extracellular matrices (aECMs) form a physical barrier to the environment. In Caenorhabditis elegans, the epidermal aECM, the cuticle, is composed mainly of different types of collagen, associated in circumferential ridges separated by furrows. Here, we show that in mutants lacking furrows, the normal intimate connection between the epidermis and the cuticle is lost, specifically at the lateral epidermis, where, in contrast to the dorsal and ventral epidermis, there are no hemidesmosomes. At the ultrastructural level, there is a profound alteration of structures that we term 'meisosomes,' in reference to eisosomes in yeast. We show that meisosomes are composed of stacked parallel folds of the epidermal plasma membrane, alternately filled with cuticle. We propose that just as hemidesmosomes connect the dorsal and ventral epidermis, above the muscles, to the cuticle, meisosomes connect the lateral epidermis to it. Moreover, furrow mutants present marked modifications of the biomechanical properties of their skin and exhibit a constitutive damage response in the epidermis. As meisosomes co-localise to macrodomains enriched in phosphatidylinositol (4,5) bisphosphate, they could conceivably act, like eisosomes, as signalling platforms, to relay tensile information from the aECM to the underlying epidermis, as part of an integrated stress response to damage.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo
8.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562751

RESUMO

Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.


Assuntos
Actinas , Septinas , Humanos , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Microscopia , Septinas/análise
9.
MicroPubl Biol ; 20212021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543000

RESUMO

If the cuticle acts as a protective barrier against environmental insults, several pathogens have developed strategies that use it as a way to infect C. elegans. The fungus Drechmeria coniospora produces spores that attach to the cuticle, before hyphae invade the body. Mutants with an altered surface coat, the outermost layer of the cuticle, including bus-2, bus-4, bus-12 and bus-17 show increased adhesion of fungal spores (Rouger et al, 2014; Zugasti et al, 2016). We unexpectedly found that D. coniospora spores attach unusually densely around the mouth of unc-119 mutants. Interestingly, this phenotype is not rescued by the C. briggsae unc-119 construct that is conventionally used to rescue neuronal unc-119 phenotypes.

10.
MicroPubl Biol ; 20212021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056565

RESUMO

Skin infection with the fungus Drechmeria coniospora leads to a transcriptional response in the worm epidermis. This involves an increased expression of a group of antimicrobial peptide (AMP) genes including those in the nlp-29 and cnc-2 clusters. The major pathways leading to the expression of these AMP genes have been well characterized and converge on the STAT transcription factor STA-2. We reported previously that expression in the epidermis of a constitutively active (gain of function, gf) form of the Gα protein GPA-12 (GPA-12gf) recapitulates much of the response to infection. To reveal parallel pathways activated by infection, we focus here on an effector gene that is not induced by GPA-12gf. This gene, ifas-1, encodes a protein with a fascin domain, associated with actin binding. Its induction upon fungal infection does not require sta-2. A transcriptional reporter revealed induction in the epidermis of ifas-1 by infection and wounding. Thus, ifas-1 represents part of a previously unexplored aspect of the innate immune response to infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA