Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 492: 71-78, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36167149

RESUMO

Despite being one of the bilaterians, the body plan of echinoderms shifts from bilateral symmetry to five-fold radial, or pentaradial symmetry during embryogenesis or their metamorphosis. While the clarification of the developmental mechanism behind this transition will be a basis for understanding their unique body plan evolution, it is still poorly understood. With this regard, the hydrocoel, a mesodermal coelom formed on the left side of bilateral larva, would be a clue for understanding the mechanism as it is the first pentaradial structure that appears before metamorphosis and develops into the water vascular system of adults. By analyzing the development of a sea cucumber, Apostichopus japonicus, we found that the hydrocoel expresses genes related in muscle and neural formation such as myosin heavy chain, tropomyosin, soxC, and elav, implying that cells of the hydrocoel contributes to muscle and neural structures in the adult. Furthermore, ablation of one of the hydrocoel lobes led to incomplete development of adult pentameral structures. The ablation of primary hydrocoel lobes resulted in the reduction in tentacles and the ablation of secondary hydrocoel lobes resulted in the reduction in water vascular canals and nerve cords. Our findings suggest that the hydrocoel lobes may serve as a potential organizing center for establishing the pentaradial body plan in echinoderms.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Metamorfose Biológica/fisiologia , Equinodermos , Água
2.
Dev Genes Evol ; 230(4): 305-314, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671457

RESUMO

Crinoids are considered as the most basal extant echinoderms. They retain aboral nervous system with a nerve center, which has been degraded in the eleutherozoan echinoderms. To investigate the evolution of patterning of the nervous systems in crinoids, we examined temporal and spatial expression patterns of three neural patterning-related homeobox genes, six3, pax6, and otx, throughout the development of a feather star Anneissia japonica. These genes were involved in the patterning of endomesodermal tissues instead of the ectodermal neural tissues in the early planktonic stages. In the stages after larval attachment, the expression of these genes was mainly observed in the podia and the oral nervous systems instead of the aboral nerve center. Our results indicate the involvement of these three genes in the formation of oral nervous system in the common ancestor of the echinoderms and suggest that the aboral nerve center is not evolutionally related to the brain of other bilaterians.


Assuntos
Equinodermos/crescimento & desenvolvimento , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx/metabolismo , Fator de Transcrição PAX6/metabolismo , Animais , Padronização Corporal/genética , Equinodermos/genética , Equinodermos/metabolismo , Evolução Molecular , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Larva/genética , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Neurônios , Fatores de Transcrição Otx/genética , Fator de Transcrição PAX6/genética , Proteína Homeobox SIX3
3.
BMC Evol Biol ; 18(1): 83, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879905

RESUMO

After publication of Nakano et al. (2017) [1], the authors became aware of the fact that the new species-group name erected for the two specimens of a Japanese xenoturbellid species in the article is not available because Nakano et al. (2017) [1] does not meet the requirement of the amendment of Article 8.5.3 of the International Code of Zoological Nomenclature (the Code) [2]. The authors therefore describe the two xenoturbellids as a new species again in this correction article. Methods for morphological observation, DNA extraction and sequencing were as described in Nakano et al. (2017) [1]. The holotype and paratype specimens are deposited in the National Museum of Nature and Science, Tsukuba (NSMT), Japan. The DNA sequences obtained were deposited in the International Nucleotide Sequence Database (INSD).

4.
BMC Evol Biol ; 17(1): 245, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29249199

RESUMO

BACKGROUND: Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS: Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS: Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.


Assuntos
Evolução Biológica , Invertebrados/anatomia & histologia , Animais , Oceano Pacífico , Filogenia , Especificidade da Espécie , Microtomografia por Raio-X
5.
Dev Genes Evol ; 225(5): 275-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250612

RESUMO

The presence of an anteroposterior body axis is a fundamental feature of bilateria. Within this group, echinoderms have secondarily evolved pentameral symmetric body plans. Although all echinoderms present bilaterally symmetric larval stages, they dramatically rearrange their body axis and develop a pentaradial body plan during metamorphosis. Therefore, the location of their anteroposterior body axis in adult forms remains a contentious issue. Unlike other echinoderms, sea cucumbers present an obvious anteroposterior axis not rearranged during metamorphosis, thus representing an interesting group to study their anteroposterior axis patterning. Hox genes are known to play a broadly conserved role in anteroposterior axis patterning in deuterostomes. Here, we report the expression patterns of Hox genes from early development to pentactula stage in sea cucumber. In early larval stages, five Hox genes (AjHox1, AjHox7, AjHox8, AjHox11/13a, and AjHox11/13b) were expressed sequentially along the archenteron, suggesting that the role of anteroposterior patterning of the Hox genes is conserved in bilateral larvae of echinoderms. In doliolaria and pentactula stages, eight Hox genes (AjHox1, AjHox5, AjHox7, AjHox8, AjHox9/10, AjHox11/13a, AjHox11/13b, and AjHox11/13c) were expressed sequentially along the digestive tract, following a similar expression pattern to that found in the visceral mesoderm of other bilateria. Unlike other echinoderms, pentameral expression patterns of AjHox genes were not observed in sea cucumber. Altogether, we concluded that AjHox genes are involved in the patterning of the digestive tract in both larvae and metamorphosis of sea cucumbers. In addition, the anteroposterior axis in sea cucumbers might be patterned like that of other bilateria.


Assuntos
Genes Homeobox , Pepinos-do-Mar/embriologia , Pepinos-do-Mar/genética , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Filogenia
6.
Zootaxa ; 3972(3): 441-9, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26249503

RESUMO

A new genus and new species of antedonid comatulid is described from southern Japan. Belonometra n. gen. has a unique appearance with ten long arms, numerous cirri, and remarkably long and crowded pinnules. The new genus shares some characters with subfamily Heliometrinae. However, the comparative length of pinnules, which is a diagnostic character to determine subfamily Antedonidae, is different. The subfamily into which the new genus should be placed is unclear.


Assuntos
Equinodermos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Equinodermos/anatomia & histologia , Equinodermos/crescimento & desenvolvimento , Ecossistema , Japão , Tamanho do Órgão
7.
Zootaxa ; 5138(4): 351-387, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36095830

RESUMO

New specimens of Taeniogyrus japonicus (Marenzeller) were collected from Iwami coast and Sado island of the Sea of Japan. According to detailed observations of external and internal organs, we transferred T. japonicus, T. dendyi (Mortensen), and Scoliorhapis theelii (Heding) to the newly revived genus Scoliodota, with a large retractor organ and hook papillae as major diagnostic characters. We also concluded that Scoliorhapis dianthus Solis-marin et al. is a synonym of T. japonicus. Our molecular phylogeny and genetic distance analysis showed that specimens from Iwami and specimens from Sado of T. japonicus form a monophyletic clade, indicating that they are most likely the same species despite their morphological variation. The phylogenetic analysis also indicated that T. japonicus forms a sister group relationship with Taeniogyrus verruculosus Yamana Tanaka and Scoliorhapis sesokoensis Yamana Tanaka, suggesting that Taeniogyrus is not monophyletic. Taken together, these results brought new insights to sea cucumber diversity in Japanese waters.


Assuntos
Pepinos-do-Mar , Animais , Filogenia
8.
Front Cell Dev Biol ; 9: 749963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900995

RESUMO

Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.

9.
Commun Biol ; 3(1): 371, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651448

RESUMO

Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya.


Assuntos
Equinodermos/genética , Lytechinus/genética , Stichopus/genética , Exoesqueleto/anatomia & histologia , Animais , Evolução Biológica , DNA/genética , Equinodermos/anatomia & histologia , Equinodermos/embriologia , Equinodermos/crescimento & desenvolvimento , Biblioteca Gênica , Genes Homeobox/genética , Genoma/genética , Lytechinus/anatomia & histologia , Lytechinus/crescimento & desenvolvimento , Filogenia , Proteômica , Análise de Sequência de DNA , Stichopus/anatomia & histologia , Stichopus/crescimento & desenvolvimento
11.
Gene Expr Patterns ; 11(1-2): 48-56, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20837165

RESUMO

The stalked crinoid, Metacrinus rotundus, is one of the most basal extant echinoderms. Here, we show the expression patterns of Six3, Pax6, and Otx in the early development of M. rotundus. All three genes are highly expressed in stages from the gastrula to the auricularia larval stage. Ectodermal expression of MrOtx appears to be correlated with development of the ciliary band. These three genes are expressed sequentially along the embryonic body axis in the anterior and middle walls of the archenteron in the order of MrPax6, MrSix3, and MrOtx. The anterior, middle, and posterior parts of the archenteron in the late gastrula differentiate into the axo-hydrocoel, the enteric sac, and somatocoels at later stages, respectively. The three genes are expressed sequentially from the tip of the axo-hydrocoel to the bottom of enteric sac in the order of MrSix3, MrPax6, and MrOtx at the later stages. This suggests that these genes are involved in patterning of the larval endo-mesoderm in stalked crinoids. The present results suggest that radical alterations have occurred in the expression and function of homeobox genes in basal echinoderms.


Assuntos
Equinodermos/genética , Proteínas de Homeodomínio/genética , Animais , Clonagem Molecular , Equinodermos/embriologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA