Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exp Cell Res ; 412(1): 113006, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34979106

RESUMO

Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.


Assuntos
Neoplasias da Mama/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Humanos , Modelos Biológicos , PPAR gama/agonistas , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Hipóxia Tumoral/fisiologia , Microambiente Tumoral/fisiologia
2.
Nano Lett ; 22(24): 9805-9814, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36520534

RESUMO

The light-induced force and convection can be enhanced by the collective effect of electrons (superradiance and red shift) in high-density metallic nanoparticles, leading to macroscopic assembly of target molecules. We here demonstrate application of the light-induced assembly for drug delivery system with enhancement of cell membrane accumulation and penetration of biofunctional molecules including cell-penetrating peptides (CPPs) with superradiance-mediated photothermal convection. For induction of photothermal assembly around targeted living cells in cell culture medium, infrared continuous-wave laser light was focused onto high-density gold-particle-bound glass bottom dishes exhibiting plasmonic superradiance or thin gold-film-coated glass bottom dishes. In this system, the biofunctional molecules can be concentrated around the targeted living cells and internalized into them only by 100 s laser irradiation. Using this simple approach, we successfully achieved enhanced cytosolic release of the CPPs and apoptosis induction using a pro-apoptotic domain with a very low peptide concentration (nM level) by light-induced condensation.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas , Linhagem Celular Tumoral , Luz , Ouro/química
3.
Part Fibre Toxicol ; 18(1): 21, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34134732

RESUMO

BACKGROUND: As the application of silica nanomaterials continues to expand, increasing chances of its exposure to the human body and potential harm are anticipated. Although the toxicity of silica nanomaterials is assumed to be affected by their physio-chemical properties, including size and surface functionalization, its molecular mechanisms remain unclear. We hypothesized that analysis of intracellular localization of the particles and subsequent intracellular signaling could reveal a novel determinant of inflammatory response against silica particles with different physico-chemical properties. RESULTS: We employed a murine intratracheal instillation model of amorphous silica nanoparticles (NPs) exposure to compare their in vivo toxicities in the respiratory system. Pristine silica-NPs of 50 nm diameters (50 nm-plain) induced airway-centered lung injury with marked neutrophilic infiltration. By contrast, instillation of pristine silica particles of a larger diameter (3 µm; 3 µm-plain) significantly reduced the severity of lung injury and neutrophilic infiltration, possibly through attenuated induction of neutrophil chemotactic chemokines including MIP2. Ex vivo analysis of alveolar macrophages as well as in vitro assessment using RAW264.7 cells revealed a remarkably lower cellular uptake of 3 µm-plain particles compared with 50 nm-plain, which is assumed to be the underlying mechanism of attenuated immune response. The severity of lung injury and neutrophilic infiltration was also significantly reduced after intratracheal instillation of silica NPs with an amine surface modification (50 nm-NH2) when compared with 50 nm-plain. Despite unchanged efficacy in cellular uptake, treatment with 50 nm-NH2 induced a significantly attenuated immune response in RAW264.7 cells. Assessment of intracellular redox signaling revealed increased reactive oxygen species (ROS) in endosomal compartments of RAW264.7 cells treated with 50 nm-plain when compared with vehicle-treated control. In contrast, augmentation of endosomal ROS signals in cells treated with 50 nm-NH2 was significantly lower. Moreover, selective inhibition of NADPH oxidase 2 (NOX2) was sufficient to inhibit endosomal ROS bursts and induction of chemokine expressions in cells treated with silica NPs, suggesting the central role of endosomal ROS generated by NOX2 in the regulation of the inflammatory response in macrophages that endocytosed silica NPs. CONCLUSIONS: Our murine model suggested that the pulmonary toxicity of silica NPs depended on their physico-chemical properties through distinct mechanisms. Cellular uptake of larger particles by macrophages decreased, while surface amine modification modulated endosomal ROS signaling via NOX2, both of which are assumed to be involved in mitigating immune response in macrophages and resulting lung injury.


Assuntos
Nanopartículas , Material Particulado/toxicidade , Dióxido de Silício , Animais , Pulmão , Macrófagos , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio , Dióxido de Silício/toxicidade
4.
Opt Express ; 21(3): 3651-7, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481821

RESUMO

In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Nanotubos de Carbono/química , Polímeros/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Nanoscale Horiz ; 8(8): 1034-1042, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37435728

RESUMO

Extracellular vesicles (EVs), including nanoscale exosomes and ectosomes, hold promise as biomarkers that provide information about the cell of origin through their cargo of nucleic acids and proteins, both on their surface and within. Here, we develop a detection method of EVs based on light-induced acceleration of specific binding between their surface and antibody-modified microparticles, using a controlled microflow with three-dimensional analysis by confocal microscopy. Our method successfully detected 103-104 nanoscale EVs in liquid samples as small as a 500 nanoliters within 5 minutes, with the ability to distinguish multiple membrane proteins. Remarkably, we achieved the specific detection of EVs secreted from living cancer cell lines with high linearity, without the need for a time-consuming ultracentrifugation process that can take several hours. Furthermore, the detection range can be controlled by adjusting the action range of optical force using a defocused laser, consistent with the theoretical calculations. These findings demonstrate an ultrafast, sensitive, and quantitative approach for measuring biological nanoparticles, enabling innovative analyses of cell-to-cell communication and early diagnosis of various diseases, including cancer.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Anticorpos/metabolismo
6.
ACS Appl Mater Interfaces ; 15(41): 47855-47865, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792057

RESUMO

In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Endocitose , Citosol/metabolismo
7.
FEBS Open Bio ; 11(3): 753-767, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533170

RESUMO

Exosomes (extracellular vesicles/EVs) participate in cell-cell communication and contain bioactive molecules, such as microRNAs. However, the detailed characteristics of secreted EVs produced by cells grown under low pH conditions are still unknown. Here, we report that low pH in the cell culture medium significantly affected the secretion of EVs with increased protein content and zeta potential. The intracellular expression level and location of stably expressed GFP-fused CD63 (an EV tetraspanin) in HeLa cells were also significantly affected by environmental pH. In addition, increased cellular uptake of EVs was observed. Moreover, the uptake rate was influenced by the presence of serum in the cell culture medium. Our findings contribute to our understanding of the effect of environmental conditions on EV-based cell-cell communication.


Assuntos
Técnicas de Cultura de Células/métodos , Vesículas Extracelulares/metabolismo , Tetraspanina 30/genética , Transporte Biológico , Comunicação Celular , Meios de Cultura/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes de Fusão/metabolismo , Tetraspanina 30/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA