Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Struct Biol ; 213(1): 107696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493635

RESUMO

The use of immunomodulatory agents for the treatment of cancer is gaining a growing biopharmaceutical interest. Antibody-cytokine fusion proteins, namely immunocytokines, represent a promising solution for the regulation of the immune system at the site of disease. The three-dimensional arrangement of these molecules can profoundly influence their biological activity and pharmacokinetic properties. Structural techniques might provide important insight in the 3D arrangement of immunocytokines. Here, we performed structure investigations on clinical grade fusion proteins L19-IL2, IL12-L19L19 and L19L19-IL2 to elucidate their quaternary organization. Crystallographic characterization of the common L19 antibody fragment at a resolution of 2.0-Å was combined with low-resolution studies of the full-length chimeric molecules using small-angle synchrotron X-ray scattering (SAXS) and negative stain electron microscopy. Characterization of the full-length quaternary structures of the immunocytokines in solution by SAXS consistently supported the diabody structure in the L19-IL2 immunocytokine and allowed generation of low-resolution models of the chimeric proteins L19L19-IL2 and IL12-L19L19. Comparison with 3D reconstructions obtained from negative-stain electron microscopy revealed marked flexibility associated to the linker regions connecting the cytokine and the antibody components of the chimeric proteins. Collectively, our results indicate that low-resolution molecular structure characterizations provide useful complementary insights for the quality control of immunocytokines, constituting a powerful tool to guide the design and the subsequent optimization steps towards clinical enhancement of these chimeric protein reagents.


Assuntos
Citocinas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Estrutura Molecular , Proteínas Recombinantes de Fusão/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
2.
Protein Sci ; 31(12): e4486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317676

RESUMO

Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.


Assuntos
Antígeno B7-H1 , Bacteriófagos , Animais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biblioteca de Peptídeos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Anticorpos Monoclonais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Especificidade de Anticorpos
3.
Mol Cancer Ther ; 20(5): 859-871, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632875

RESUMO

IL15 is an immunostimulatory cytokine that holds promises for cancer therapy, but its performance (alone or as partner for fusion proteins) has often been limited by suboptimal accumulation in the tumor and very rapid clearance from circulation. Most recently, the Sushi Domain (SD, the shortest region of IL15 receptor α, capable of binding to IL15) has been fused to IL15-based anticancer products to increase its biological activity. Here, we describe two novel antibody fusion proteins (termed F8-F8-IL15 and F8-F8-SD-IL15), specific to the alternatively spliced EDA domain of fibronectin (a marker of tumor neoangiogenisis, expressed in the majority of solid and hematologic tumors, but absent in normal healthy tissues) and featuring the F8 antibody in single-chain diabody format (with a short linker between VH and VL, thus allowing the domains to pair with the complementary ones of another chain). Unlike previously described fusions of the F8 antibody with human IL15, F8-F8-IL15 and F8-F8-SD-IL15 exhibited a preferential uptake in solid tumors, as evidenced by quantitative biodistribution analysis with radioiodinated protein preparations. Both products were potently active in vivo against mouse metastatic colon carcinomas and in sarcoma lesion in combination with targeted TNF. The results may be of clinical significance, as F8-F8-IL15 and F8-F8-SD-IL15 are fully human proteins, which recognize the cognate tumor-associated antigen with identical affinity in mouse and man.


Assuntos
Interleucina-15/metabolismo , Metástase Neoplásica/tratamento farmacológico , Proteínas de Fusão Oncogênica/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
4.
Exp Biol Med (Maywood) ; 246(8): 940-951, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475433

RESUMO

Interleukin-9 is a cytokine with multiple functions, including the ability to activate group 2 innate lymphoid cells, which has been postulated to be therapeutically active in mouse models of arthritis. Similarly, interleukin-9 has been suggested to play an important role in tumor immunity. Here, we describe the cloning, expression, and characterization of three fusion proteins based on murine interleukin-9 and the F8 antibody, specific to the alternatively spliced EDA domain of fibronectin. EDA is strongly expressed in cancer and in various arthritic conditions, while being undetectable in the majority of healthy organs. Interleukin-9-based fusion proteins with an irrelevant antibody specific to hen egg lysozyme served as negative control in our study. The fusion proteins were characterized by quantitative biodistribution analysis in tumor-bearing mice using radioiodinated protein preparations. The highest tumor uptake and best tumor:organ ratios were observed for a format, in which the interleukin-9 moiety was flanked by two units of the F8 antibody in single-chain Fv format. Biological activity of interleukin-9 was retained when the payload was fused to antibodies. However, the targeted delivery of interleukin-9 to the disease site resulted in a modest anti-tumor activity in three different murine models of cancer (K1735M2, CT26, and F9), while no therapeutic benefit was observed in a collagen induced model of arthritis. Collectively, these results confirm the possibility to deliver interleukin-9 to the site of disease but cast doubts about the alleged therapeutic activity of this cytokine in cancer and arthritis, which has been postulated in previous publications.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Artrite Experimental/tratamento farmacológico , Interleucina-9/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Monoclonais Humanizados/genética , Artrite Experimental/genética , Artrite Experimental/metabolismo , Sistemas de Liberação de Medicamentos , Avaliação de Medicamentos , Interleucina-9/genética , Masculino , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética
5.
Oncotarget ; 11(41): 3698-3711, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33110477

RESUMO

The targeted delivery of interleukin-2 to the tumor is gaining attention as an avenue to potentiate the action of T and NK cells at the site of disease. We have previously described the fusion of the L19 antibody, specific to the EDB domain of fibronectin, with human interleukin-2, using a non-covalent homodimeric diabody format. Here, we describe four novel formats for the L19-IL2 fusion, featuring different arrangements of antibody and IL2. A comparative quantitative biodistribution analysis in tumor-bearing mice using radioiodinated proteins revealed that the novel format (L19L19-IL2, with the antibody in single-chain diabody format) exhibited the best biodistribution results. In vitro assays on peripheral blood mononuclear cells showed a decrease activation of regulatory T cells when single IL2 domain was used. In vivo, both L19-IL2 and L19L19-IL2 inhibited tumor growth in immunocompetent mouse models of cancer. T-cell analysis revealed similar levels of CD4+ and FoxP3+ cells, with an expansion of the CD8+ T cell in mice treated with L19-IL2 and L19L19-IL2. The percentage of CD4+ regulatory T cells was markedly decreased with L19L19-IL2 combined with a mouse-specific PD-1 blocker. Collectively, these data indicate that the new L19L19-IL2 format exhibits favorable tumor-homing properties and mediates a potent anti-cancer activity in vivo.

6.
Oncotarget ; 10(62): 6678-6690, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31803362

RESUMO

INTRODUCTION: Cytokine-based products are gaining importance for cancer immunotherapy. L19-TNF is a clinical-stage antibody-cytokine fusion protein that selectively accumulates to tumors and displays potent anticancer activity in preclinical models. Here, we describe an innovative approach to transiently inhibit off-target toxicity of L19-TNF, while maintaining antitumor activity. METHODS: GSK'963, a potent small molecule inhibitor of RIPK1, was tested in tumor-bearing mice for its ability to reduce acute toxicity associated with TNF signaling. The biological effects of L19-TNF on tumor cells, lymphocytes and tumor vessels were investigated with the aim to enable the administration of TNF doses, which would otherwise be lethal. RESULTS: Transient inhibition of RIPK1 allowed to increase the maximal tolerated dose of L19-TNF. The protective effect of GSK'963 did not affect the selective localization of the immunocytokine to tumors as evidenced by quantitative biodistribution analysis and allowed to reach high local TNF concentrations around tumor blood vessels, causing diffused vascular shutdown and hemorrhagic necrosis within the neoplastic mass. CONCLUSIONS: The selective inhibition of RIPK1 with small molecule inhibitors can be used as a pharmaceutical tool to transiently mask TNF activity and improve the therapeutic window of TNF-based biopharmaceuticals. Similar approaches may be applicable to other pro-inflammatory cytokines.

7.
J Biotechnol ; 291: 17-25, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30586544

RESUMO

Antibody-cytokine fusion proteins are a class of biopharmaceuticals, with the potential to modulate the activity of the immune system at the site of disease. The molecular format used to connect antibody moiety and cytokine payload can have a profound influence on biological activity and pharmacokinetic properties. The optimization of fusion protein format is particularly challenging for heterodimeric cytokines, since various molecular arrangements can be considered. In this article, we have explored the role of linker in a tumor-targeting IL12 fusion protein, based on the L19 antibody, specific to the extra-domain B of fibronectin. In biodistribution studies performed in tumor-bearing mice using radioiodinated protein preparations, fusion of human IL12 at the N-terminus of the L19 antibody in tandem-diabody format led to higher tumor uptake and improved tumor-to-organ ratios, compared to a similar fusion protein featuring L19 in IgG1 format. Moreover, optimization of the amino acid composition in eight variants of the linker connecting the IL12 moiety to the tandem-diabody revealed that a 15-amino acid linker (GSADGGSSAGGSDAG) displayed the best tumor targeting characteristics, with a long residence time at the tumor site and a rapid clearance from blood and normal organs. The product is being developed for industrial and clinical applications.


Assuntos
Anticorpos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Interleucina-12/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Anticorpos/genética , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Interleucina-12/genética , Camundongos , Peptídeos/genética
8.
Front Oncol ; 9: 1228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799191

RESUMO

Certain cytokines synergize in activating anti-cancer immunity at the site of disease and it may be desirable to generate biopharmaceutical agents, capable of simultaneous delivery of cytokine pairs to the tumor. In this article, we have described the cloning, expression and characterization of IL2-XE114-TNFmut, a dual-cytokine biopharmaceutical featuring the sequential fusion of interleukin-2 (IL2) with the XE114 antibody in scFv format and a tumor necrosis factor mutant (TNFmut). The fusion protein recognized the cognate antigen (carbonic anhydrase IX, a marker of hypoxia and of renal cell carcinoma) with high affinity and specificity. IL2-XE114-TNFmut formed a stable non-covalent homotrimeric structure, displayed cytokine activity in in vitro tests and preferentially localized to solid tumors in vivo. The product exhibited a partial growth inhibition of murine CT26 tumors transfected for carbonic anhydrase IX. When administered to Cynomolgus monkey as intravenous injection, IL2-XE114-TNFmut showed the expected plasma concentration of ~1,500 ng/ml at early time points, indicating the absence of any in vivo trapping events, and a half-life of ~2 h. IL2-XE114-TNFmut may thus be considered as a promising biopharmaceutical for the treatment of metastatic clear-cell renal cell carcinoma, since these tumors are known to be sensitive to IL2 and to TNF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA