Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(4): 1372-1380, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363222

RESUMO

BACKGROUND: Taro (Colocasia esculenta cv. Daikichi) is believed to be one of the earliest cultivated tuber crops and it is a staple food in many parts of the world. The mother corm and side cormels (daughter and granddaughter tubers) form the major consumed parts; however, the former is rarely preferred. Taro is mainly cultivated using either unflooded or flooding cultivation, under dryland-rainfed and wetland-irrigated conditions, respectively. Although flooding cultivation has several advantages, such as lower risk of diseases, weeds, and insect pests, contributing to increased tuber yield, its effects on the quality characteristics of the tubers are largely unknown. In this study, the effects of controlled flooding cultivation on the quality of mother corm and side cormels were investigated. Their taste, color, physical properties, antioxidant activity, and starch, oxalic acid, nitrate ion, arabinogalactan (AG)/AG protein (AGP), γ-aminobutyric acid (GABA), and total polyphenol content was compared with those under unflooded cultivation. RESULTS: Flooding cultivation increased polyphenol levels and antioxidant activity and decreased oxalate, nitrate ion, GABA, and AG/AGP levels. Flooding cultivation also reduced the harshness and increased the hardness and stickiness of steamed mother corm paste, generally discarded under unflooded cultivation, thus rendering it suitable for consumption. CONCLUSION: Controlled flooding cultivation has economic advantages and the potential to improve the quality of cultivated taro. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Colocasia , Antioxidantes , Inundações , Tubérculos , Amido
2.
Biosci Biotechnol Biochem ; 81(12): 2253-2260, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027500

RESUMO

Fifteen steroidal saponins 1-15, which include 4 furostanol glycosides 1-3 and 15, and 11 spirostanol glycosides 4-14, were isolated from the tubers and leaves of lesser yam (Dioscorea esculenta, Togedokoro). Their structures were identified by nuclear magnetic resonance and liquid chromatography mass spectroscopy. Four steroidal saponins 9, 11, 14, and 15 were found to be novel compounds.


Assuntos
Dioscorea/química , Saponinas/química , Esteroides/química
3.
Plant Direct ; 3(5): e00137, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31245777

RESUMO

Reactive oxygen species (ROS) are ubiquitous signaling molecules involved in diverse physiological processes, including stomatal closure. Photosynthetic electron transport (PET) is the main source of ROS generation in plants, but whether it functions in guard cell signaling remains unclear. Here, we assessed whether PET functions in abscisic acid (ABA) signaling in guard cells. ABA-elicited ROS were localized to guard cell chloroplasts in Arabidopsis thaliana, Commelina benghalensis, and Vicia faba in the light and abolished by the PET inhibitors 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea and 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. These inhibitors reduced ABA-induced stomatal closure in all three species, as well as in the NADPH oxidase-lacking mutant atrboh D/F. However, an NADPH oxidase inhibitor did not fully eliminate ABA-induced ROS in the chloroplasts, and ABA-induced ROS were still observed in the guard cell chloroplasts of atrboh D/F. This study demonstrates that ROS generated through PET act as signaling molecules in ABA-induced stomatal closure and that this occurs in concert with ROS derived through NADPH oxidase.

4.
J Biochem ; 161(1): 45-53, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27616715

RESUMO

Cucumisin [EC 3.4.21.25], a subtilisin-like serine endopeptidase, was isolated from melon fruit, Cucumis melo L. Mature cucumisin (67 kDa, 621 residues) is produced by removal of the propeptide (10 kDa, 88 residues) from the cucumisin precursor by subsequence processing. It is reported that cucumisin is inhibited by its own propeptide. The crystal structure of mature cucumisin is reported to be composed of three domains: the subtilisin-like catalytic domain, the protease-associated domain and the C-terminal fibronectin-III-like domain. In this study, the crystal structure of the mature cucumisin•propeptide complex was determined by the molecular replacement method and refined at 1.95 Å resolution. In this complex, the propeptide had a domain of the α-ß sandwich motif with four-stranded antiparallel ß-sheets, two helices and a strand of the C-terminal region. The ß-sheets of the propeptide bind to two parallel surface helices of cucumisin through hydrophobic interaction and 27 hydrogen bonds. The C-terminus of the propeptide binds to the cleft of the active site as peptide substrates. The inhibitory assay suggested that the C-terminal seven residues of the propeptide do not inhibit the cucumisin activity. The crystal structure of the cucumisin•propeptide complex revealed the regulation mechanism of cucumisin activity.


Assuntos
Cucurbitaceae/enzimologia , Precursores Enzimáticos/química , Proteínas de Plantas/química , Serina Endopeptidases/química , Cristalografia por Raios X , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA