Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 37(5): e22842, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37000501

RESUMO

Joint contracture causes distressing permanent mobility disorder due to trauma, arthritis, and aging, with no effective treatment available. A principal and irreversible cause of joint contracture has been regarded as the development of joint capsule fibrosis. However, the molecular mechanisms underlying contracture remain unclear. We established a mouse model of knee joint contracture, revealing that fibrosis in joint capsules causes irreversible contracture. RNA-sequencing of contracture capsules demonstrated a marked enrichment of the genes involved in the extracellular region, particularly periostin (Postn). Three-dimensional magnetic resonance imaging and immunohistological analysis of contracture patients revealed posterior joint capsule thickening with abundant type I collagen (Col1a2) and POSTN in humans. Col1a2-GFPTG ; Postn-/- mice and chimeric mice with Col1a2-GFPTG ; tdTomatoTG bone marrow showed fibrosis in joint capsules caused by bone marrow-derived fibroblasts, and POSTN promoted the migration of bone marrow-derived fibroblasts, contributing to fibrosis and contracture. Conversely, POSTN-neutralizing antibody attenuated contracture exacerbation. Our findings identified POSTN as a key inducer of fibroblast migration that exacerbates capsule fibrosis, providing a potential therapeutic strategy for joint contracture.


Assuntos
Medula Óssea , Contratura , Humanos , Camundongos , Animais , Medula Óssea/patologia , Amplitude de Movimento Articular , Contratura/genética , Contratura/tratamento farmacológico , Fibrose , Fibroblastos/patologia
2.
J Neurotrauma ; 40(23-24): 2566-2579, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503626

RESUMO

Neonatal spinal cord injury (SCI) shows better functional outcomes than adult SCI. Although the regenerative capability in the neonatal spinal cord may have cues in the treatment of adult SCI, the mechanism underlying neonatal spinal cord regeneration after SCI is unclear. We previously reported age-dependent variation in the pathogenesis of inflammation after SCI. Therefore, we explored differences in the pathogenesis of inflammation after SCI between neonatal and adult mice and their effect on axon regeneration and functional outcome. We established two-day-old spinal cord crush mice as a model of neonatal SCI. Immunohistochemistry of the spinal cord revealed that the nuclear translocation of NF-κB, which promotes the expression of chemokines, was significantly lower in the astrocytes of neonates than in those of adults. Flow cytometry revealed that neonatal astrocytes secrete low levels of chemokines to recruit circulating neutrophils (e.g., Cxcl1 and Cxcl2) after SCI in comparison with adults. We also found that the expression of a chemokine receptor (CXCR2) and an adhesion molecule (ß2 integrin) quantified by flow cytometry was lower in neonatal circulating neutrophils than in adult neutrophils. Strikingly, these neonate-specific cellular properties seemed to be associated with no neutrophil infiltration into the injured spinal cord, followed by significantly lower expression of inflammatory cytokines (Il-1ß, Il-6 and TNF-α) after SCI in the spinal cords of neonates than in those of adults. At the same time, significantly fewer apoptotic neurons and greater axonal regeneration were observed in neonates in comparison with adults, which led to a marked recovery of locomotor function. This neonate-specific mechanism of inflammation regulation may have potential therapeutic applications in controlling inflammation after adult SCI.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Camundongos , Animais , Neutrófilos/metabolismo , Animais Recém-Nascidos , Doenças Neuroinflamatórias , Axônios/patologia , Astrócitos/metabolismo , Medula Espinal/metabolismo , Inflamação/etiologia , Quimiocinas
3.
Sci Rep ; 13(1): 11177, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429920

RESUMO

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism through which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in the injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3-/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8-/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8-/- bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism through which migrating macrophages attract astrocytes and affect the pathophysiology and outcome after SCI.


Assuntos
Gliose , Traumatismos da Medula Espinal , Animais , Camundongos , Fatores Reguladores de Interferon , Macrófagos
4.
Exp Neurol ; 359: 114264, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336030

RESUMO

Spinal cord injury (SCI) causes reactive astrogliosis, the sequential phenotypic change of astrocytes in which naïve astrocytes (NAs) transform into reactive astrocytes (RAs) and subsequently become scar-forming astrocytes (SAs), resulting in glial scar formation around the lesion site and thereby limiting axonal regeneration and motor/sensory functional recovery. Inhibiting the transformation of RAs into SAs in the acute phase attenuates the reactive astrogliosis and promotes regeneration. However, whether or not SAs once formed can revert to RAs or SAs is unclear. We performed selective isolation of astrocytes from glial scars at different time points for a gene expression analysis and found that the expression of Sox9, an important transcriptional factor for glial cell differentiation, was significantly increased in chronic phase astrocytes (CAs) compared to SAs in the sub-acute phase. Furthermore, CAs showed a significantly lower expression of chondroitin sulfate proteoglycan (CSPG)-related genes than SAs. These results indicated that SAs changed their phenotypes according to the surrounding environment of the injured spinal cord over time. Even though the integrin-N-cadherin pathway is critical for glial scar formation, collagen-I-grown scar-forming astrocytes (Col-I-SAs) did not change their phenotype after depleting the effect of integrin or N-cadherin. In addition, we found that Col-I-SAs transplanted into a naïve spinal cord formed glial scar again by maintaining a high expression of genes involved in the integrin-N-cadherin pathway and a low expression of CSPG-related genes. Interestingly, the transplanted Col-I-SAs changed NAs into SAs, and anti-ß1-integrin antibody blocked the recruitment of SAs while reducing the volume of glial scar in the chronic phase. Our findings indicate that while the characteristics of glial scars change over time after SCI, SAs have a cell-autonomous function to form and maintain a glial scar, highlighting the basic mechanism underlying the persistence of glial scars after central nervous system injury until the chronic phase, which may be a therapeutic target.


Assuntos
Gliose , Traumatismos da Medula Espinal , Humanos , Gliose/patologia , Astrócitos/metabolismo , Cicatriz/patologia , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Integrina beta1/metabolismo , Caderinas/metabolismo , Integrinas/metabolismo , Integrinas/uso terapêutico , Inflamação/metabolismo
5.
Res Sq ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36789440

RESUMO

After spinal cord injury (SCI), inflammatory cells such as macrophages infiltrate the injured area, and astrocytes migrate, forming a glial scar around macrophages. The glial scar inhibits axonal regeneration, resulting in significant permanent disability. However, the mechanism by which glial scar-forming astrocytes migrate to the injury site has not been clarified. Here we show that migrating macrophages attract reactive astrocytes toward the center of the lesion after SCI. Chimeric mice with bone marrow lacking IRF8, which controls macrophage centripetal migration after SCI, showed widely scattered macrophages in injured spinal cord with the formation of a huge glial scar around the macrophages. To determine whether astrocytes or macrophages play a leading role in determining the directions of migration, we generated chimeric mice with reactive astrocyte-specific Socs3 -/- mice, which showed enhanced astrocyte migration, and bone marrow from IRF8 -/- mice. In this mouse model, macrophages were widely scattered, and a huge glial scar was formed around the macrophages as in wild-type mice that were transplanted with IRF8 -/ bone marrow. In addition, we revealed that macrophage-secreted ATP-derived ADP attracts astrocytes via the P2Y1 receptor. Our findings revealed a mechanism in which migrating macrophages attracted astrocytes and affected the pathophysiology and outcome after SCI.

6.
Front Immunol ; 14: 1290100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022538

RESUMO

Background: Spinal cord injury (SCI) is a devastating disease that results in permanent paralysis. Currently, there is no effective treatment for SCI, and it is important to identify factors that can provide therapeutic intervention during the course of the disease. Zinc, an essential trace element, has attracted attention as a regulator of inflammatory responses. In this study, we investigated the effect of zinc status on the SCI pathology and whether or not zinc could be a potential therapeutic target. Methods: We created experimental mouse models with three different serum zinc concentration by changing the zinc content of the diet. After inducing contusion injury to the spinal cord of three mouse models, we assessed inflammation, apoptosis, demyelination, axonal regeneration, and the number of nuclear translocations of NF-κB in macrophages by using qPCR and immunostaining. In addition, macrophages in the injured spinal cord of these mouse models were isolated by flow cytometry, and their intracellular zinc concentration level and gene expression were examined. Functional recovery was assessed using the open field motor score, a foot print analysis, and a grid walk test. Statistical analysis was performed using Wilcoxon rank-sum test and ANOVA with the Tukey-Kramer test. Results: In macrophages after SCI, zinc deficiency promoted nuclear translocation of NF-κB, polarization to pro-inflammatory like phenotype and expression of pro-inflammatory cytokines. The inflammatory response exacerbated by zinc deficiency led to worsening motor function by inducing more apoptosis of oligodendrocytes and demyelination and inhibiting axonal regeneration in the lesion site compared to the normal zinc condition. Furthermore, zinc supplementation after SCI attenuated these zinc-deficiency-induced series of responses and improved motor function. Conclusion: We demonstrated that zinc affected axonal regeneration and motor functional recovery after SCI by negatively regulating NF-κB activity and the subsequent inflammatory response in macrophages. Our findings suggest that zinc supplementation after SCI may be a novel therapeutic strategy for SCI.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Camundongos , Animais , NF-kappa B/metabolismo , Traumatismos da Medula Espinal/patologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Minerais/uso terapêutico , Zinco/metabolismo , Doenças Desmielinizantes/metabolismo
7.
Sci Rep ; 12(1): 15580, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114355

RESUMO

In crush syndrome, massive muscle breakdown resulting from ischemia-reperfusion muscle injury can be a life-threatening condition that requires urgent treatment. Blood reperfusion into the ischemic muscle triggers an immediate inflammatory response, and neutrophils are the first to infiltrate and exacerbate the muscle damage. Since free zinc ion play a critical role in the immune system and the function of neutrophils is impaired by zinc depletion, we hypothesized that the administration of a zinc chelator would be effective for suppressing the inflammatory reaction at the site of ischemia-reperfusion injury and for improving of the pathology of crush syndrome. A crush syndrome model was created by using a rubber tourniquet to compress the bilateral hind limbs of mice at 8 weeks. A zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) was administered immediately after reperfusion in order to assess the anti-inflammatory effect of the chelator for neutrophils. Histopathological evaluation showed significantly less muscle breakdown and fewer neutrophil infiltration in TPEN administration group compared with control group. In addition, the expression levels of inflammatory cytokine and chemokine such as IL-6, TNFα, CXCL1, CXCL2, CXCR2, CCL2 in ischemia-reperfusion injured muscle were significantly suppressed with TPEN treatment. Less dilatation of renal tubules in histological evaluation in renal tissue and significantly better survival rate were demonstrated in TPEN treatment for ischemia-reperfusion injury in crush syndrome. The findings of our study suggest that zinc chelators contributed to the resolution of exacerbation of the inflammatory response and attenuation of muscle breakdown in the acute phase after crush syndrome. In addition, our strategy of attenuation of the acute inflammatory reaction by zinc chelators may provide a promising therapeutic strategy not only for crush syndrome, but also for other diseases driven by inflammatory reactions.


Assuntos
Quelantes , Síndrome de Esmagamento , Infiltração de Neutrófilos , Traumatismo por Reperfusão , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quelantes/uso terapêutico , Quimiocinas , Síndrome de Esmagamento/tratamento farmacológico , Citocinas , Etilenodiaminas , Inflamação/tratamento farmacológico , Interleucina-6/uso terapêutico , Isquemia/tratamento farmacológico , Camundongos , Músculos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Borracha , Fator de Necrose Tumoral alfa/uso terapêutico , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA