Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 146(8): 084108, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249434

RESUMO

The quasiparticle (QP) energies, which are minus of the energies required by removing or produced by adding one electron from/to the system, corresponding to the photoemission or inverse photoemission (PE/IPE) spectra, are determined together with the QP wave functions, which are not orthonormal and even not linearly independent but somewhat similar to the normal spin orbitals in the theory of the configuration interaction, by self-consistently solving the QP equation coupled with the equation for the self-energy. The electron density, kinetic, and all interaction energies can be calculated using the QP wave functions. We prove in a simple way that the PE/IPE spectroscopy and therefore this QP theory can be applied to an arbitrary initial excited eigenstate. In this proof, we show that the energy-dependence of the self-energy is not an essential difficulty, and the QP picture holds exactly if there is no relaxation mechanism in the system. The validity of the present theory for some initial excited eigenstates is tested using the one-shot GW approximation for several atoms and molecules.

2.
Phys Chem Chem Phys ; 18(35): 24477-83, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27538378

RESUMO

van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results.

3.
J Chem Phys ; 145(2): 024702, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421422

RESUMO

Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understand the cap states.

4.
J Chem Phys ; 144(14): 144309, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083723

RESUMO

Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

5.
J Phys Chem A ; 119(12): 3048-55, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25738487

RESUMO

In the present study, we investigate different types of 1D peanut-shaped fullerene polymers (PSFPs) using density functional theory to understand the electronic states and the energetic stability of curved carbon nanomaterials. We generated 53 different models of the 1D PSFPs by means of the generalized Stone-Wales transformations and performed structural optimization for each model. Band structures of the 1D PSFPs exhibit either metallic or semiconducting property according to the geometrical structures. We find that the energetic stability of the 1D PSFPs depends on the geometry: the more octagon and pentagon-octagon pairs (heptagons and hexagon-heptagon pairs) in their geometrical structures, the more stable (unstable) the 1D PSFPs.

6.
Phys Chem Chem Phys ; 16(15): 7102-7, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24618855

RESUMO

Using a density functional method to study the electronic structure of various three-coordinated sp(2) carbon nanostructures, we find that the presence of an eight-membered ring adjoined to two five-membered rings in a unit cell brings about the simultaneous occurrence of flat and dispersive bands, quite similar to the band structure of precious metals. These bands are parts of an anisotropic Dirac cone tilted from an isotropic one. We reveal that in-phase and out-of-phase oscillations in the sign of the phase of the Kohn-Sham orbital contribute to the appearance of the unique band structures.

7.
Nat Commun ; 15(1): 4600, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816382

RESUMO

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

8.
J Phys Condens Matter ; 35(32)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37137311

RESUMO

The optical properties of pure liquid copper were investigated using density functional theory with the Quantum ESPRESSO package. The effects of structural changes were investigated by comparing the electron density of states and imaginary part of the dielectric function between the crystalline and liquid states with densities near the melting point. The results indicated that the effect of interband transitions remains in the structural changes near the melting point.

9.
Sci Rep ; 12(1): 7258, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508483

RESUMO

Although many binary compounds have the B2 (CsCl-type) structure in the thermodynamic phase diagram, an origin of the dynamical stability is not understood well. Here, we focus on 416 compounds in the B2 structure extracted from the Materials Project, and study the dynamical stability of those compounds from first principles. We demonstrate that the dynamical stability of the B2 compounds lies in whether the lowest frequency phonons around the M point in the Brillouin zone are endowed with a positive frequency, except for VRu. We show that the interatomic interactions up to the fourth nearest neighbor atoms are necessary for stabilizing such phonon modes, which should determine the minimum cutoff radius for constructing the interatomic potentials of binary compounds with guaranteed accuracy.

10.
Sci Rep ; 11(1): 14588, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272459

RESUMO

Some of the three-dimensional (3D) crystal structures are constructed by stacking two-dimensional (2D) layers. To study whether this geometric concept, i.e., using 2D layers as building blocks for 3D structures, can be applied to computational materials design, we theoretically investigate the dynamical stability of copper-based compounds CuX (a metallic element X) in the B[Formula: see text] and L1[Formula: see text] structures constructed from the buckled honeycomb (BHC) structure and in the B2 and L1[Formula: see text] structures constructed from the buckled square (BSQ) structure. We demonstrate that (i) if CuX in the BHC structure is dynamically stable, those in the B[Formula: see text] and L1[Formula: see text] structures are also stable. Using molecular dynamics simulations, we particularly show that CuAu in the B[Formula: see text] and L1[Formula: see text] structures withstand temperatures as high as 1000 K. Although the interrelationship of the metastability between the BSQ and the 3D structures (B2 and L1[Formula: see text]) is not clear, we find that (ii) if CuX in the B2 (L1[Formula: see text]) structure is dynamically stable, that in the L1[Formula: see text] (B2) is unstable. This is rationalized by the tetragonal Bain path calculations.

11.
Sci Rep ; 10(1): 11810, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678271

RESUMO

Polonium is known as the only simple metal that has the simple cubic (SC) lattice in three dimension. There is a debate about whether the stabilized SC structure is attributed to the scalar relativistic effect or the spin-orbit coupling (SOC). Here, we study another phase, two-dimensional (2D) polonium (poloniumene), by performing density-functional theory calculations. We show that the 2D polonium has the square lattice structure as its ground state and demonstrate that the SOC (beyond the scalar relativistic approximation) suppresses the Peierls instability and is necessary to obtain no imaginary phonon frequencies over the Brillouin zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA