Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prostate ; 84(3): 254-268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905842

RESUMO

BACKGROUND: Even though prostate cancer (PCa) patients initially respond to androgen deprivation therapy, some will eventually develop castration resistant prostate cancer (CRPC). Androgen receptor (AR) mediated cell signaling is a major driver in the progression of CRPC while only a fraction of PCa becomes AR negative. This study aimed to understand the regulation of AR levels by N-myristoyltransferase in PCa cells. METHODS: Two enantiomers, (1S,2S)- d-NMAPPD and (1R,2R)- d-NMAPPD (LCL4), were characterized by various methods (1 H and 13 C NMR, UHPLC, high-resolution mass spectra, circular dichroism) and evaluated for the ability to bind to N-myristoyltransferase 1 (NMT1) using computational docking analysis. structure-activity relationship analysis of these compounds led to the synthesis of (1R,2R)-LCL204 and evaluation as a potential NMT1 inhibitor utilizing the purified full length NMT1 enzyme. The NMT inhibitory activity wase determined by Click chemistry and immunoblotting. Regulation of NMT1 on tumor growth was evaluated in a xenograft tumor model. RESULTS: (1R,2R)- d-NMAPPD, but not its enantiomer (1S,2S)- d-NMAPPD, inhibited NMT1 activity and reduced AR protein levels. (1R,2R)-LCL204, a derivative of (1R,2R)- d-NMAPPD, inhibited global protein myristoylation. It also suppressed protein levels, nuclear translocation, and transcriptional activity of AR full-length or variants in PCa cells. This was due to enhanced ubiquitin and proteasome-mediated degradation of AR. Knockdown of NMT1 levels inhibited tumor growth and proliferation of cancer cells. CONCLUSION: Inhibitory efficacy on N-myristoyltransferase activity by d-NMAPPD is stereospecific. (1R,2R)-LCL204 reduced global N-myristoylation and androgen receptor protein levels at low micromolar concentrations in prostate cancer cells. pharmacological inhibition of NMT1 enhances ubiquitin-mediated proteasome degradation of AR. This study illustrates a novel function of N-myristoyltransferase and provides a potential strategy for treatment of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias de Próstata Resistentes à Castração/patologia , Antagonistas de Androgênios , Complexo de Endopeptidases do Proteassoma , Ubiquitinas , Linhagem Celular Tumoral
2.
J Org Chem ; 85(24): 16035-16042, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-32897074

RESUMO

The preparation of glycosyl dibutyl phosphates in the 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) and pseudaminic acid series and their application to the formation of C-glycosides are described. Both donors were obtained from the corresponding thioglycosides by treatment with dibutylphosphoric acid and N-iodosuccinimide. As with the thioglycosides, both donors adopted very predominantly the strongly electron-withdrawing tg conformation of their side chains, which is reflected in the excellent equatorial selectivity of both donors in the formation of exemplary O-glycosides. With respect to C-glycoside formation on the other hand, contrasting results were observed: the KDO donor was either relatively unselective or selective for the formation of the axial C-glycoside, while the pseudaminic acid donor was selective for the formation of the equatorial C-glycoside. These observations are rationalized in terms of the greater electron-withdrawing ability of the azides in the pseudaminic acid donor compared to the corresponding acetoxy groups in the KDO series, resulting in a reaction through tighter ion pairs even at the SN1 end of the general glycosylation mechanism. The contrast in the axial versus the equatorial selectivity between C- and O-glycosylation cautions against the extrapolation of models for SN1-type glycosylation with weak nucleophiles for the explanation of O-glycosylation.


Assuntos
Glicosídeos , Açúcares Ácidos , Estereoisomerismo
3.
ACS Infect Dis ; 8(3): 596-611, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35199517

RESUMO

Over the last 20 years, both severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 have transmitted from animal hosts to humans causing zoonotic outbreaks of severe disease. Both viruses originate from a group of betacoronaviruses known as subgroup 2b. The emergence of two dangerous human pathogens from this group along with previous studies illustrating the potential of other subgroup 2b members to transmit to humans has underscored the need for antiviral development against them. Coronaviruses modify the host innate immune response in part through the reversal of ubiquitination and ISGylation with their papain-like protease (PLpro). To identify unique or overarching subgroup 2b structural features or enzymatic biases, the PLpro from a subgroup 2b bat coronavirus, BtSCoV-Rf1.2004, was biochemically and structurally evaluated. This evaluation revealed that PLpros from subgroup 2b coronaviruses have narrow substrate specificity for K48 polyubiquitin and ISG15 originating from certain species. The PLpro of BtSCoV-Rf1.2004 was used as a tool alongside PLpro of CoV-1 and CoV-2 to design 30 novel noncovalent drug-like pan subgroup 2b PLpro inhibitors that included determining the effects of using previously unexplored core linkers within these compounds. Two crystal structures of BtSCoV-Rf1.2004 PLpro bound to these inhibitors aided in compound design as well as shared structural features among subgroup 2b proteases. Screening of these three subgroup 2b PLpros against this novel set of inhibitors along with cytotoxicity studies provide new directions for pan-coronavirus subgroup 2b antiviral development of PLpro inhibitors.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Inibidores de Proteases , SARS-CoV-2 , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA