Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Digit Imaging ; 33(6): 1543-1553, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025166

RESUMO

Temporal subtraction (TS) technique calculates a subtraction image between a pair of registered images acquired from the same patient at different times. Previous studies have shown that TS is effective for visualizing pathological changes over time; therefore, TS should be a useful tool for radiologists. However, artifacts caused by partial volume effects degrade the quality of thick-slice subtraction images, even with accurate image registration. Here, we propose a subtraction method for reducing artifacts in thick-slice images and discuss its implementation in high-speed processing. The proposed method is based on voxel matching, which reduces artifacts by considering gaps in discretized positions of two images in subtraction calculations. There are two different features between the proposed method and conventional voxel matching: (1) the size of a searching region to reduce artifacts is determined based on discretized position gaps between images and (2) the searching region is set on both images for symmetrical subtraction. The proposed method is implemented by adopting an accelerated subtraction calculation method that exploit the nature of liner interpolation for calculating the signal value at a point among discretized positions. We quantitatively evaluated the proposed method using synthetic data and qualitatively using clinical data interpreted by radiologists. The evaluation showed that the proposed method was superior to conventional methods. Moreover, the processing speed using the proposed method was almost unchanged from that of the conventional methods. The results indicate that the proposed method can improve the quality of subtraction images acquired from thick-slice images.


Assuntos
Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Humanos , Radiologistas , Técnica de Subtração
2.
Eur Radiol ; 29(12): 6439-6442, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31273458

RESUMO

OBJECTIVE: Temporal subtraction of CT (TS) images improves detection of newly developed bone metastases (BM). We sought to determine whether TS improves detection of BM by radiology residents as well. METHODS: We performed an observer study using a previously reported dataset, consisting of 60 oncology patients, each with previous and current CT images. TS images were calculated using in-house software. Four residents independently interpreted twice the 60 sets of CT images, without and with TS. They identified BM by marking suspicious lesions likely to be BM. Lesion-based sensitivity and number of false positives per patient were calculated. Figure-of-merit (FOM) was calculated. Detectability of BM, with and without TS, was compared between radiology residents and board-certified radiologists, as published previously. RESULTS: FOM of residents significantly improved by implementing TS (p value < 0.0001). Lesion-based sensitivity, false positives per patients, and FOM were 40.8%, 0.121, and 0.657, respectively, without TS, and 58.1%, 0.0958, and 0.796, respectively, with TS. These findings were comparable with the previously published values for board-certified radiologists without TS (58.0%, 0.19, and 0.758, respectively). CONCLUSION: The detectability of BM by residents improved markedly by implementing TS and reached that of board-certified radiologists without TS. KEY POINTS: • Detectability of bone metastases on CT by residents improved significantly when using temporal subtraction of CT (TS). • Detections by residents with TS and board-certified radiologists without TS were comparable. • TS is useful for residents as it is for board-certified radiologists.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Competência Clínica/estatística & dados numéricos , Interpretação de Imagem Assistida por Computador/métodos , Radiologia/educação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Internato e Residência , Sensibilidade e Especificidade , Técnica de Subtração
3.
Eur Radiol ; 29(10): 5673-5681, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30888486

RESUMO

OBJECTIVES: To compare observer performance of detecting bone metastases between bone scintigraphy, including planar scan and single-photon emission computed tomography, and computed tomography (CT) temporal subtraction (TS). METHODS: Data on 60 patients with cancer who had undergone CT (previous and current) and bone scintigraphy were collected. Previous CT images were registered to the current ones by large deformation diffeomorphic metric mapping; the registered previous images were subtracted from the current ones to produce TS. Definitive diagnosis of bone metastases was determined by consensus between two radiologists. Twelve readers independently interpreted the following pairs of examinations: NM-pair, previous and current CTs and bone scintigraphy, and TS-pair, previous and current CTs and TS. The readers assigned likelihood levels to suspected bone metastases for diagnosis. Sensitivity, number of false positives per patient (FPP), and reading time for each pair of examinations were analysed for evaluating observer performance by performing the Wilcoxon signed-rank test. Figure-of-merit (FOM) was calculated using jackknife alternative free-response receiver operating characteristic analysis. RESULTS: The sensitivity of TS was significantly higher than that of bone scintigraphy (54.3% vs. 41.3%, p = 0.006). FPP with TS was significantly higher than that with bone scintigraphy (0.189 vs. 0.0722, p = 0.003). FOM of TS tended to be better than that of bone scintigraphy (0.742 vs. 0.691, p = 0.070). CONCLUSION: Sensitivity of TS in detecting bone metastasis was significantly higher than that of bone scintigraphy, but still limited to 54%. TS might be superior to bone scintigraphy for early detection of bone metastasis. KEY POINTS: • Computed tomography temporal subtraction was helpful in early detection of bone metastases. • Sensitivity for bone metastasis was higher for computed tomography temporal subtraction than for bone scintigraphy. • Figure-of-merit of computed tomography temporal subtraction was better than that of bone scintigraphy.


Assuntos
Neoplasias Ósseas/diagnóstico , Detecção Precoce de Câncer/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/secundário , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Curva ROC
4.
Eur Radiol ; 29(2): 759-769, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30062525

RESUMO

OBJECTIVE: To assess whether temporal subtraction (TS) images of brain CT improve the detection of suspected brain infarctions. METHODS: Study protocols were approved by our institutional review board, and informed consent was waived because of the retrospective nature of this study. Forty-two sets of brain CT images of 41 patients, each consisting of a pair of brain CT images scanned at two time points (previous and current) between January 2011 and November 2016, were collected for an observer performance study. The 42 sets consisted of 23 cases with a total of 77 newly developed brain infarcts or hyperdense artery signs confirmed by two radiologists who referred to additional clinical information and 19 negative control cases. To create TS images, the previous images were registered to the current images by partly using a non-rigid registration algorithm and then subtracted. Fourteen radiologists independently interpreted the images to identify the lesions with and without TS images with an interval of over 4 weeks. A figure of merit (FOM) was calculated along with the jackknife alternative free-response receiver-operating characteristic analysis. Sensitivity, number of false positives per case (FPC) and reading time were analyzed by the Wilcoxon signed-rank test. RESULTS: The mean FOM increased from 0.528 to 0.737 with TS images (p < 0.0001). The mean sensitivity and FPC improved from 26.5% and 0.243 to 56.0% and 0.153 (p < 0.0001 and p = 0.239), respectively. The mean reading time was 173 s without TS and 170 s with TS (p = 0.925). CONCLUSION: The detectability of suspected brain infarctions was significantly improved with TS CT images. KEY POINTS: • Although it is established that MRI is superior to CT in the detection of strokes, the first choice of modality for suspected stroke patients is often CT. • An observer performance study with 14 radiologists was performed to evaluate whether temporal subtraction images derived from a non-rigid transformation algorithm can significantly improve the detectability of newly developed brain infarcts on CT. • Temporal subtraction images were shown to significantly improve the detectability of newly developed brain infarcts on CT.


Assuntos
Infarto Encefálico/diagnóstico por imagem , Técnica de Subtração , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Sci Rep ; 13(1): 17533, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845348

RESUMO

To evaluate the diagnostic performance of our deep learning (DL) model of COVID-19 and investigate whether the diagnostic performance of radiologists was improved by referring to our model. Our datasets contained chest X-rays (CXRs) for the following three categories: normal (NORMAL), non-COVID-19 pneumonia (PNEUMONIA), and COVID-19 pneumonia (COVID). We used two public datasets and private dataset collected from eight hospitals for the development and external validation of our DL model (26,393 CXRs). Eight radiologists performed two reading sessions: one session was performed with reference to CXRs only, and the other was performed with reference to both CXRs and the results of the DL model. The evaluation metrics for the reading session were accuracy, sensitivity, specificity, and area under the curve (AUC). The accuracy of our DL model was 0.733, and that of the eight radiologists without DL was 0.696 ± 0.031. There was a significant difference in AUC between the radiologists with and without DL for COVID versus NORMAL or PNEUMONIA (p = 0.0038). Our DL model alone showed better diagnostic performance than that of most radiologists. In addition, our model significantly improved the diagnostic performance of radiologists for COVID versus NORMAL or PNEUMONIA.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Raios X , Tomografia Computadorizada por Raios X/métodos , Pneumonia/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiologistas , Computadores , Estudos Retrospectivos
6.
Sci Rep ; 12(1): 8214, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581272

RESUMO

This retrospective study aimed to develop and validate a deep learning model for the classification of coronavirus disease-2019 (COVID-19) pneumonia, non-COVID-19 pneumonia, and the healthy using chest X-ray (CXR) images. One private and two public datasets of CXR images were included. The private dataset included CXR from six hospitals. A total of 14,258 and 11,253 CXR images were included in the 2 public datasets and 455 in the private dataset. A deep learning model based on EfficientNet with noisy student was constructed using the three datasets. The test set of 150 CXR images in the private dataset were evaluated by the deep learning model and six radiologists. Three-category classification accuracy and class-wise area under the curve (AUC) for each of the COVID-19 pneumonia, non-COVID-19 pneumonia, and healthy were calculated. Consensus of the six radiologists was used for calculating class-wise AUC. The three-category classification accuracy of our model was 0.8667, and those of the six radiologists ranged from 0.5667 to 0.7733. For our model and the consensus of the six radiologists, the class-wise AUC of the healthy, non-COVID-19 pneumonia, and COVID-19 pneumonia were 0.9912, 0.9492, and 0.9752 and 0.9656, 0.8654, and 0.8740, respectively. Difference of the class-wise AUC between our model and the consensus of the six radiologists was statistically significant for COVID-19 pneumonia (p value = 0.001334). Thus, an accurate model of deep learning for the three-category classification could be constructed; the diagnostic performance of our model was significantly better than that of the consensus interpretation by the six radiologists for COVID-19 pneumonia.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , COVID-19/diagnóstico por imagem , Humanos , Pneumonia/diagnóstico , Estudos Retrospectivos , SARS-CoV-2
7.
Sci Rep ; 11(1): 18422, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531429

RESUMO

To determine whether temporal subtraction (TS) CT obtained with non-rigid image registration improves detection of various bone metastases during serial clinical follow-up examinations by numerous radiologists. Six board-certified radiologists retrospectively scrutinized CT images for patients with history of malignancy sequentially. These radiologists selected 50 positive and 50 negative subjects with and without bone metastases, respectively. Furthermore, for each subject, they selected a pair of previous and current CT images satisfying predefined criteria by consensus. Previous images were non-rigidly transformed to match current images and subtracted from current images to automatically generate TS images. Subsequently, 18 radiologists independently interpreted the 100 CT image pairs to identify bone metastases, both without and with TS images, with each interpretation separated from the other by an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Compared with interpretation without TS images, interpretation with TS images was associated with a significantly higher mean figure of merit (0.710 vs. 0.658; JAFROC analysis, P = 0.0027). Mean sensitivity at lesion-based was significantly higher for interpretation with TS compared with that without TS (46.1% vs. 33.9%; P = 0.003). Mean false positive count per subject was also significantly higher for interpretation with TS than for that without TS (0.28 vs. 0.15; P < 0.001). At the subject-based, mean sensitivity was significantly higher for interpretation with TS images than that without TS images (73.2% vs. 65.4%; P = 0.003). There was no significant difference in mean specificity (0.93 vs. 0.95; P = 0.083). TS significantly improved overall performance in the detection of various bone metastases.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Tomografia Computadorizada por Raios X/normas , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/secundário , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Radiologistas/estatística & dados numéricos , Sensibilidade e Especificidade , Software , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA