Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 187(13): 4552-61, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15968066

RESUMO

In Escherichia coli, sigma(E) regulon functions are required for envelope homeostasis during stress and are essential for viability under all growth conditions. The E. coli genome encodes approximately 100 lipoproteins, and 6 of these are regulated by sigma(E). Phenotypes associated with deletion of each of these lipoproteins are the subject of this report. One lipoprotein, YfiO, is essential for cellular viability. However, overexpression of this protein is not sufficient to alleviate the requirement of sigma(E) for viability, suggesting that the sigma(E) regulon provides more than one essential function. The remaining five lipoproteins in the sigma(E) regulon are nonessential; cells are viable even when all five are removed simultaneously. Deletion of three nonessential lipoprotein genes (nlpB, yraP, ygfL) results in the exhibition of phenotypes that suggest they are important for maintenance of the integrity of the cell envelope. deltanlpB cells are selectively sensitive to rifampin; deltayraP cells are selectively sensitive to sodium dodecyl sulfate. Such selective sensitivity has not been previously reported. Both deltayraP and deltanlpB are synthetically lethal with surA::Cm, which encodes a periplasmic chaperone and PPIase, suggesting that NlpB and YraP play roles in a periplasmic folding pathway that functions in parallel with that of SurA. Finally, the deltayfgL mutant exhibits a broad range of envelope defects, including sensitivity to several membrane-impermeable agents, an altered outer membrane protein profile, synthetic lethality with both surA::Cm and deltafkpA::Cm strains, and sensitivity to a bactericidal permeability-increasing peptide. We suggest that this lipoprotein performs a very important but as-yet-unknown function in maintaining the integrity of the cell envelope.


Assuntos
Escherichia coli/genética , Lipoproteínas/genética , Regulon , Fator sigma/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa , Parede Celular , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli , Dados de Sequência Molecular , Dobramento de Proteína , Rifampina/farmacologia , Dodecilsulfato de Sódio/farmacologia , Tensoativos/farmacologia
2.
Genes Dev ; 16(16): 2156-68, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12183369

RESUMO

All cells have stress response pathways that maintain homeostasis in each cellular compartment. In the Gram-negative bacterium Escherichia coli, the sigma(E) pathway responds to protein misfolding in the envelope. The stress signal is transduced across the inner membrane to the cytoplasm via the inner membrane protein RseA, the anti-sigma factor that inhibits the transcriptional activity of sigma(E). Stress-induced activation of the pathway requires the regulated proteolysis of RseA. In this report we show that RseA is degraded by sequential proteolytic events controlled by the inner membrane-anchored protease DegS and the membrane-embedded metalloprotease YaeL, an ortholog of mammalian Site-2 protease (S2P). This is consistent with the mechanism of activation of ATF6, the mammalian unfolded protein response transcription factor by Site-1 protease and S2P. Thus, mammalian and bacterial cells employ a conserved proteolytic mechanism to activate membrane-associated transcription factors that initiate intercompartmental cellular stress responses.


Assuntos
Proteínas de Bactérias/fisiologia , Endopeptidases/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Sítios de Ligação , Western Blotting , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espectrofotometria , Frações Subcelulares/metabolismo , Fatores de Tempo , Transdução Genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA