Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phys Rev Lett ; 123(7): 077001, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491112

RESUMO

Hydrogen-based compounds under ultrahigh pressure, such as the polyhydrides H_{3}S and LaH_{10}, superconduct through the conventional electron-phonon coupling mechanism to attain the record critical temperatures known to date. Here we exploit the intrinsic advantages of hydrogen to strongly enhance phonon-mediated superconductivity in a completely different system, namely, a two-dimensional material with hydrogen adatoms. We find that van Hove singularities in the electronic structure, originating from atomiclike hydrogen states, lead to a strong increase of the electronic density of states at the Fermi level, and thus of the electron-phonon coupling. Additionally, the emergence of high-frequency hydrogen-related phonon modes in this system boosts the electron-phonon coupling further. As a concrete example, we demonstrate the effect of hydrogen adatoms on the superconducting properties of monolayer MgB_{2}, by solving the fully anisotropic Eliashberg equations, in conjunction with a first-principles description of the electronic and vibrational states, and their coupling. We show that hydrogenation leads to a high critical temperature of 67 K, which can be boosted to over 100 K by biaxial tensile strain.

2.
Phys Rev Lett ; 119(8): 087203, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952751

RESUMO

The conversion of charge currents into spin currents in nonmagnetic conductors is a hallmark manifestation of spin-orbit coupling that has important implications for spintronic devices. Here we report the measurement of the interfacial spin accumulation induced by the spin Hall effect in Pt and W thin films using magneto-optical Kerr microscopy. We show that the Kerr rotation has opposite sign in Pt and W and scales linearly with current density. By comparing the experimental results with ab initio calculations of the spin Hall and magneto-optical Kerr effects, we quantitatively determine the current-induced spin accumulation at the Pt interface as 5×10^{-12} µ_{B} A^{-1} cm^{2} per atom. From thickness-dependent measurements, we determine the spin diffusion length in a single Pt film to be 11±3 nm, which is significantly larger compared to that of Pt adjacent to a magnetic layer.

3.
Phys Rev Lett ; 114(9): 097203, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793847

RESUMO

Trivalent americium has a nonmagnetic (J=0) ground state arising from the cancellation of the orbital and spin moments. However, magnetism can be induced by a large molecular field if Am^{3+} is embedded in a ferromagnetic matrix. Using the technique of x-ray magnetic circular dichroism, we show that this is the case in AmFe_{2}. Since ⟨J_{z}⟩=0, the spin component is exactly twice as large as the orbital one, the total Am moment is opposite to that of Fe, and the magnetic dipole operator ⟨T_{z}⟩ can be determined directly; we discuss the progression of the latter across the actinide series.

4.
Nat Mater ; 12(4): 332-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23353629

RESUMO

Irradiating a ferromagnet with a femtosecond laser pulse is known to induce an ultrafast demagnetization within a few hundred femtoseconds. Here we demonstrate that direct laser irradiation is in fact not essential for ultrafast demagnetization, and that electron cascades caused by hot electron currents accomplish it very efficiently. We optically excite a Au/Ni layered structure in which the 30 nm Au capping layer absorbs the incident laser pump pulse and subsequently use the X-ray magnetic circular dichroism technique to probe the femtosecond demagnetization of the adjacent 15 nm Ni layer. A demagnetization effect corresponding to the scenario in which the laser directly excites the Ni film is observed, but with a slight temporal delay. We explain this unexpected observation by means of the demagnetizing effect of a superdiffusive current of non-equilibrium, non-spin-polarized electrons generated in the Au layer.

5.
Phys Rev Lett ; 109(7): 077203, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006399

RESUMO

We explore a combination of density-functional theory with supplemented Coulomb U (DFT+U) and ab initio molecular dynamics simulations to investigate the spin-crossover (SCO) phenomenon in coordination polymers. We demonstrate the applicability of the method for the case of bimetallic metal-organic framework Fe(2)[Nb(CN)(8)]·(4-pyridinealdoxime)(8)·2H(2)O [see S. Ohkoshi et al. Nat. Chem. 3, 564 (2011)]. Our study shows that this approach is capable of capturing the SCO transitions driven by pressure as well as temperature. In addition to discovering novel spin-state transitions, magnetic states involving changes in the long-range magnetic ordering pattern are achieved, thereby offering the tunability of spin states as well as the long-range order of the spins. We compare the SCO transition in the Fe-based framework with a computer designed Mn-based variant.

6.
Phys Rev Lett ; 107(20): 207201, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181762

RESUMO

The spin-flip (SF) Eliashberg function is calculated from first principles for ferromagnetic Ni to accurately establish the contribution of Elliott-Yafet electron-phonon SF scattering to Ni's femtosecond laser-driven demagnetization. This is used to compute the SF probability and demagnetization rate for laser-created thermalized as well as nonequilibrium electron distributions. Increased SF probabilities are found for thermalized electrons, but the induced demagnetization rate is extremely small. A larger demagnetization rate is obtained for nonequilibrium electron distributions, but its contribution is too small to account for femtosecond demagnetization.

7.
J Phys Condens Matter ; 33(35)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951618

RESUMO

In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.

8.
Nat Mater ; 8(4): 337-41, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19234447

RESUMO

Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a 'hidden order' has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu(2)Si(2), where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface 'hot spots' where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations.

10.
Phys Rev Lett ; 105(2): 027203, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20867735

RESUMO

We propose a semiclassical model for femtosecond laser-induced demagnetization due to spin-polarized excited electron diffusion in the superdiffusive regime. Our approach treats the finite elapsed time and transport in space between multiple electronic collisions exactly, as well as the presence of several metal films in the sample. Solving the derived transport equation numerically we show that this mechanism accounts for the experimentally observed demagnetization within 200 fs in Ni, without the need to invoke any angular momentum dissipation channel.

11.
Phys Rev Lett ; 104(18): 187401, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482206

RESUMO

We have observed a quadratic x-ray magneto-optical effect in near-normal-incidence reflection at the M edges of iron. The effect appears as the magnetically induced rotation of approximately 0.1 degrees of the polarization plane of linearly polarized x-ray radiation upon reflection. A comparison of the measured rotation spectrum with results from x-ray magnetic linear dichroism data demonstrates that this is the first observation of the Schäfer-Hubert effect in the x-ray regime. Ab initio density-functional theory calculations reveal that hybridization effects of the 3p core states necessarily need to be considered when interpreting experimental data. The discovered magneto-x-ray effect holds promise for future ultrafast and element-selective studies of ferromagnetic as well as antiferromagnetic materials.

12.
J Microsc ; 237(3): 465-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20500419

RESUMO

We analyse theoretically the influence of the asymmetry of the two-beam geometry on quantitative measurements of the energy-loss magnetic chiral dichroism. Our simulations indicate that this asymmetry is not very strong inside or close to the Thales circle, but in other regions of the diffraction plane it can hinder an accurate extraction of the orbital to spin moment ratio.

13.
J Phys Condens Matter ; 32(14): 143002, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801118

RESUMO

This topical review describes the multitude of unconventional behaviors in the hidden order, heavy fermion, antiferromagnetic and superconducting phases of the intermetallic compound URu2Si2 when tuned with pressure, magnetic field, and substitutions for all three elements. Such 'perturbations' result in a variety of new phases beyond the mysterious hidden order that are only now being slowly understood through a series of state-of-the-science experimentation, along with an array of novel theoretical approaches. Despite all these efforts spanning more than 30 years, hidden order (HO) remains puzzling and non-clarified, and the search continues in 2019 into a fourth decade for its final resolution. Here we attempt to update the present situation of URu2Si2 importing the latest experimental results and theoretical proposals. First, let us consider the pristine compound as a function of temperature and report the recent measurements and models relating to its heavy Fermi liquid crossover, its HO and superconductivity (SC). Recent experiments and theories are surmized that address four-fold symmetry breaking (or nematicity), Isingness and unconventional excitation modes. Second, we review the pressure dependence of URu2Si2 and its transformation to antiferromagnetic long-range order. Next we confront the dramatic high magnetic-field phases requiring fields above 40 T. And finally, we attempt to answer how does random substitutions of other 5f elements for U, and 3d, 4d, and 5d elements for Ru, and even P for Si affect and transform the HO. Commensurately, recent theoretical models are summarized and then related to the intriguing experimental behavior.

14.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967827

RESUMO

Ultrafast demagnetization of rare-earth metals is distinct from that of 3d ferromagnets, as rare-earth magnetism is dominated by localized 4f electrons that cannot be directly excited by an optical laser pulse. Their demagnetization must involve excitation of magnons, driven either through exchange coupling between the 5d6s-itinerant and 4f-localized electrons or by coupling of 4f spins to lattice excitations. Here, we disentangle the ultrafast dynamics of 5d6s and 4f magnetic moments in terbium metal by time-resolved photoemission spectroscopy. We show that the demagnetization time of the Tb 4f magnetic moments of 400 fs is set by 4f spin-lattice coupling. This is experimentally evidenced by a comparison to ferromagnetic gadolinium and supported by orbital-resolved spin dynamics simulations. Our findings establish coupling of the 4f spins to the lattice via the orbital momentum as an essential mechanism driving magnetization dynamics via ultrafast magnon generation in technically relevant materials with strong magnetic anisotropy.

15.
J Phys Condens Matter ; 31(12): 124002, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30625433

RESUMO

We demonstrate a novel method for the excitation of sizable magneto-optical effects in Au by means of the laser-induced injection of hot spin-polarized electrons in Au/Fe/MgO(0 0 1) heterostructures. It is based on the energy- and spin-dependent electron transmittance of Fe/Au interface which acts as a spin filter for non-thermalized electrons optically excited in Fe. We show that after crossing the interface, majority electrons propagate through the Au layer with the velocity on the order of 1 nm fs-1 (close to the Fermi velocity) and the decay length on the order of 100 nm. Featuring ultrafast functionality and requiring no strong external magnetic fields, spin injection results in a distinct magneto-optical response of Au. We develop a formalism based on the phase of the transient complex MOKE response and demonstrate its robustness in a plethora of experimental and theoretical MOKE studies on Au, including our ab initio calculations. Our work introduces a flexible tool to manipulate magneto-optical properties of metals on the femtosecond timescale that holds high potential for active magneto-photonics, plasmonics, and spintronics.

16.
Nat Commun ; 9(1): 1035, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515124

RESUMO

"The technical support from SLAC Accelerator Directorate, Technology Innovation Directorate, LCLS laser division and Test Facility Division is gratefully acknowledged. We thank S.P. Weathersby, R.K. Jobe, D. McCormick, A. Mitra, S. Carron and J. Corbett for their invaluable help and technical assistance. Research at SLAC was supported through the SIMES Institute which like the LCLS and SSRL user facilities is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The UED work was performed at SLAC MeV-UED, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the LCLS Facility, and SLAC under contract Nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515."and"Work at BNL was supported by DOE BES Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886. J.C. would like to acknowledge the support from National Science Foundation Grant No. 1207252. E.E.F. would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678."This has been corrected in both the PDF and HTML versions of the Article.

17.
Nat Commun ; 9(1): 388, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374151

RESUMO

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

18.
J Phys Condens Matter ; 19(31): 315216, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21694116

RESUMO

The ferromagnetic ground states of the half-Heusler compounds AuMnX (X = In, Sn, Sb) have been calculated in the framework of the local spin-density approximation (LSDA) to density functional theory (DFT). AuMnSn is computed to be a half-metallic ferromagnet, whereas AuMnIn and AuMnSb are not half-metallic, due to their different band filling. The computed relativistic electronic structures served as inputs to calculate the magneto-optical Kerr rotations and ellipticities for all three materials. In the case of AuMnSn the largest, zero-temperature, polar Kerr rotation has been found to be -0.45° at about 1 eV photon energy. The computed MOKE spectra of AuMnSn are in qualitative agreement with recent experiments. The largest Kerr rotations of AuMnIn and AuMnSb have been calculated to be +0.64° at 4.3 eV and -0.85° at 0.9 eV, respectively.

19.
Sci Rep ; 7(1): 14458, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089566

RESUMO

Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB2. These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

20.
Sci Rep ; 7(1): 4114, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646186

RESUMO

Manipulation of magnetisation with ultrashort laser pulses is promising for information storage device applications. The dynamics of the magnetisation response depends on the energy transfer from the photons to the spins during the initial laser excitation. A material of special interest for magnetic storage are FePt nanoparticles, for which switching of the magnetisation with optical angular momentum was demonstrated recently. The mechanism remained unclear. Here we investigate experimentally and theoretically the all-optical switching of FePt nanoparticles. We show that the magnetisation switching is a stochastic process. We develop a complete multiscale model which allows us to optimize the number of laser shots needed to switch the magnetisation of high anisotropy FePt nanoparticles in our experiments. We conclude that only angular momentum induced optically by the inverse Faraday effect will provide switching with one single femtosecond laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA