Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Chem Biol ; 12(10): 2619-2630, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28849908

RESUMO

Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Animais , Proteínas de Transporte/genética , Biologia Computacional , Humanos , Modelos Moleculares , Família Multigênica , Análise Serial de Proteínas , Conformação Proteica , Domínios Proteicos , Células-Tronco
2.
PLoS One ; 11(2): e0148762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26910052

RESUMO

The MAGE (melanoma associated antigen) protein family are tumour-associated proteins normally present only in reproductive tissues such as germ cells of the testis. The human genome encodes over 60 MAGE genes of which one class (containing MAGE-A3 and MAGE-A4) are exclusively expressed in tumours, making them an attractive target for the development of targeted and immunotherapeutic cancer treatments. Some MAGE proteins are thought to play an active role in driving cancer, modulating the activity of E3 ubiquitin ligases on targets related to apoptosis. Here we determined the crystal structures of MAGE-A3 and MAGE-A4. Both proteins crystallized with a terminal peptide bound in a deep cleft between two tandem-arranged winged helix domains. MAGE-A3 (but not MAGE-A4), is predominantly dimeric in solution. Comparison of MAGE-A3 and MAGE-A3 with a structure of an effector-bound MAGE-G1 suggests that a major conformational rearrangement is required for binding, and that this conformational plasticity may be targeted by allosteric binders.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
3.
J Struct Funct Genomics ; 8(2-3): 107-19, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17932789

RESUMO

As many of the structural genomics centers have ended their first phase of operation, it is a good point to evaluate the scientific impact of this endeavour. The Structural Genomics Consortium (SGC), operating from three centers across the Atlantic, investigates human proteins involved in disease processes and proteins from Plasmodium falciparum and related organisms. We present here some of the scientific output of the Oxford node of the SGC, where the target areas include protein kinases, phosphatases, oxidoreductases and other metabolic enzymes, as well as signal transduction proteins. The SGC has aimed to achieve extensive coverage of human gene families with a focus on protein-ligand interactions. The methods employed for effective protein expression, crystallization and structure determination by X-ray crystallography are summarized. In addition to the cumulative impact of accelerated delivery of protein structures, we demonstrate how family coverage, generic screening methodology, and the availability of abundant purified protein samples, allow a level of discovery that is difficult to achieve otherwise. The contribution of NMR to structure determination and protein characterization is discussed. To make this information available to a wide scientific audience, a new tool for disseminating annotated structural information was created that also represents an interactive platform allowing for a continuous update of the annotation by the scientific community.


Assuntos
Genômica , Ligantes , Família Multigênica/fisiologia , Proteínas/química , Proteínas/metabolismo , Genômica/métodos , Humanos , Proteínas/genética , Proteínas/fisiologia , Termodinâmica
4.
Biochemistry ; 41(50): 14659-68, 2002 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-12475215

RESUMO

The enzyme 3beta/17beta-hydroxysteroid dehydrogenase (3beta/17beta-HSD) is a steroid-inducible component of the Gram-negative bacterium Comamonas testosteroni. It catalyzes the reversible reduction/dehydrogenation of the oxo/beta-hydroxy groups at positions 3 and 17 of steroid compounds, including hormones and isobile acids. Crystallographic analysis at 1.2 A resolution reveals the enzyme to have nearly identical subunits that form a tetramer with 222 symmetry. This is one of the largest oligomeric structures refined at this resolution. The subunit consists of a monomer with a single-domain structure built around a seven-stranded beta-sheet flanked by six alpha-helices. The active site contains a Ser-Tyr-Lys triad, typical for short-chain dehydrogenases/reductases (SDR). Despite their highly diverse substrate specificities, SDR members show a close to identical folding pattern architectures and a common catalytic mechanism. In contrast to other SDR apostructures determined, the substrate binding loop is well-defined. Analysis of structure-activity relationships of catalytic cleft residues, docking analysis of substrates and inhibitors, and accessible surface analysis explains how 3beta/17beta-HSD accommodates steroid substrates of different conformations.


Assuntos
17-Hidroxiesteroide Desidrogenases/química , Comamonas testosteroni/enzimologia , Modelos Moleculares , 17-Hidroxiesteroide Desidrogenases/genética , Androgênios/química , Apoenzimas/química , Apoenzimas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/química , Sítios de Ligação/genética , Comamonas testosteroni/genética , Cristalografia por Raios X , Estrogênios/química , Mutação Puntual , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Estereoisomerismo , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA