Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110620, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406982

RESUMO

The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of ß-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 µM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.


Assuntos
Doença de Alzheimer , Neuroblastoma , Oligoelementos , Humanos , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Ligantes , Células HEK293 , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases/metabolismo , Aminoquinolinas/farmacologia , Relação Estrutura-Atividade
2.
Pharmaceutics ; 14(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745878

RESUMO

Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.

3.
Chem Biol Interact ; 308: 101-109, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100281

RESUMO

Eight derivatives of 4-aminoquinolines differing in the substituents attached to the C(4)-amino group and C(7) were synthesised and tested as inhibitors of human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Both enzymes were inhibited by all of the compounds with inhibition constants (Ki) ranging from 0.50 to 50 µM exhibiting slight selectivity toward AChE over BChE. The most potent inhibitors of AChE were compounds with an n-octylamino chain or adamantyl group. The shortening of the chain length resulted in a decrease in AChE inhibition by 5-20 times. Docking studies revealed that the quinoline group within the AChE active site was positioned in the choline binding site, while the C(4)-amino group substituents, depending on their lipophilicity, could establish hydrogen bonds or π-interactions with residues of the peripheral anionic site. The most potent inhibitors of BChE were compounds with the most voluminous substituent on C(4)-amino group (adamantyl) or those with a stronger electron withdrawing substituent on C(7) (trifluormethyl group). Based on AChE inhibition, compounds with an n-octylamino chain or adamantyl substituent were shown to possess the capacity for further development as potential drugs for treatment of neurodegenerative diseases.


Assuntos
Acetilcolinesterase/química , Aminoquinolinas/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Aminoquinolinas/metabolismo , Sítios de Ligação , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
ACS Chem Biol ; 14(12): 2800-2809, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647218

RESUMO

Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype's antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 µM), biofilm formation (BFIC50 = 50 µM), and motility. Experimentally, the compound's activity is achieved through competitive inhibition of PqsR, and structure-activity data were rationalized using molecular docking studies.


Assuntos
Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/antagonistas & inibidores , Piocianina/biossíntese , Quinolinas/farmacologia , Biofilmes , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa/metabolismo , Relação Quantitativa Estrutura-Atividade , Quinolinas/química
5.
Bioorg Med Chem ; 16(14): 7039-45, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18550377

RESUMO

Eleven new tetraoxanes possessing cholic acid-derived carrier and isopropylidene moiety were synthesized and were tested in vitro and in vivo. In vitro screening revealed that nine of them were more potent against CQ-resistant W2 than CQ-susceptible D6 strain and that two of them were equally or more potent than artemisinin and mefloquine against multi-drug resistant TM91C235 strain. Amine 8 cured all mice at the dose of 160mg/kg/day, while the anilide 9 exhibited MCD

Assuntos
Antimaláricos/síntese química , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Acetona , Animais , Artemisininas , Avaliação Pré-Clínica de Medicamentos , Resistência a Múltiplos Medicamentos , Mefloquina , Camundongos , Plasmodium falciparum/efeitos dos fármacos
6.
ACS Chem Biol ; 12(5): 1425-1434, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350449

RESUMO

Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 µM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 µM and 63 µM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 µM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.


Assuntos
Aminoquinolinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade
7.
J Med Chem ; 57(10): 4134-53, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24742203

RESUMO

Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 µM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 µM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2.


Assuntos
Aminoquinolinas/síntese química , Antimaláricos/síntese química , Toxinas Botulínicas Tipo A/antagonistas & inibidores , Metaloproteases/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/síntese química , Aminoquinolinas/farmacologia , Animais , Antimaláricos/farmacologia , Embrião de Galinha , Cloroquina/farmacologia , Resistência a Medicamentos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 45(10): 4570-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20705369

RESUMO

An alignment-free 3D QSAR study on antiproliferative activity of the thirty-three 1,2,4,5-tetraoxane derivatives toward two human dedifferentiated cell lines was reported. GRIND methodology, where descriptors are derived from GRID molecular interaction fields (MIF), were used. It was found that pharmacophoric pattern attributed to the most potent derivatives include amido NH of the primary or secondary amide, and the acetoxy fragments at positions 7 and 12 of steroid core which are, along with the tetraoxane ring, common for all studied compounds. Independently, simple multiple regression model obtained by using the whole-molecular properties, confirmed that the hydrophobicity and the H-bond donor properties are the main parameters influencing potency of compounds toward human cervix carcinoma (HeLa) and human malignant melanoma (FemX) cell lines. Corollary, similar structural motifs are found to be important for the potency toward both examined cell lines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Tetraoxanos/química , Tetraoxanos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Carcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Melanoma/tratamento farmacológico , Modelos Biológicos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Neoplasias do Colo do Útero/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA