Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(4): 871-882, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609705

RESUMO

Touch generated by our voluntary movements is attenuated both at the perceptual and neural levels compared with touch of the same intensity delivered to our body by another person or machine. This somatosensory attenuation phenomenon relies on the integration of somatosensory input and predictions about the somatosensory consequences of our actions. Previous studies have reported increased somatosensory attenuation in elderly people, proposing an overreliance on sensorimotor predictions to compensate for age-related declines in somatosensory perception; however, recent results have challenged this direct relationship. In a preregistered study, we used a force-discrimination task to assess whether aging increases somatosensory attenuation and whether this increase is explained by decreased somatosensory precision in elderly individuals. Although 94% of our sample (n = 108, 21-77 yr old) perceived their self-generated touches as weaker than externally generated touches of identical intensity (somatosensory attenuation) regardless of age, we did not find a significant increase in somatosensory attenuation in our elderly participants (65-77 yr old), but a trend when considering only the oldest subset (69-77 yr old). Moreover, we did not observe a significant age-related decline in somatosensory precision or a significant relationship of age with somatosensory attenuation. Together, our results suggest that aging exerts a limited influence on the perception of self-generated and externally generated touch and indicate a less direct relationship between somatosensory precision and attenuation in the elderly individuals than previously proposed.NEW & NOTEWORTHY Self-generated touch is attenuated compared with externally generated touch of identical intensity. This somatosensory attenuation has been previously shown to be increased in elderly participants, but it remains unclear whether it is related to age-related somatosensory decline. In our preregistered study, we observed a trend for increased somatosensory attenuation in our oldest participants (≥69 yr), but we found no evidence of an age-related decline in somatosensory function or a relationship of age with somatosensory attenuation.


Assuntos
Percepção do Tato , Tato , Humanos , Idoso , Envelhecimento
2.
J Neurophysiol ; 130(5): 1183-1193, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703491

RESUMO

Sensory processing consists in the integration and interpretation of somatosensory information. It builds upon proprioception but is a distinct function requiring complex processing by the brain over time. Currently little is known about the effect of aging on sensory processing ability or the influence of other covariates such as motor function, proprioception, or cognition. In this study, we measured upper limb passive and active sensory processing, motor function, proprioception, and cognition in 40 healthy younger adults and 54 older adults. We analyzed age differences across all measures and evaluated the influence of covariates on sensory processing through regression. Our results showed larger effect sizes for age differences in sensory processing (r = 0.38) compared with motor function (r = 0.18-0.22) and proprioception (r = 0.10-0.27) but smaller than for cognition (r = 0.56-0.63). Aside from age, we found no evidence that sensory processing performance was related to motor function or proprioception, but active sensory processing was related to cognition (ß = 0.30-0.42). In conclusion, sensory processing showed an age-related decline, whereas some proprioceptive and motor abilities were preserved across age.NEW & NOTEWORTHY Sensory processing consists in the integration and interpretation of sensory information by the brain over time and can be affected by lesion while proprioception remains intact. We investigated how sensory processing can be used to reproduce and identify shapes. We showed that the effect of age on sensory processing is more pronounced than its effect on proprioception or motor function. Age and cognition are related to sensory processing, not proprioception or motor function.


Assuntos
Propriocepção , Extremidade Superior , Cognição , Percepção
3.
Brain Cogn ; 171: 106073, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611344

RESUMO

Older adults with and without Parkinson's disease show impaired retention after training of motor or cognitive skills. This systematic review with meta-analysis aims to investigate whether adding transcranial direct current stimulation (tDCS) to motor or cognitive training versus placebo boosts motor sequence and working memory training. The effects of interest were estimated between three time points, i.e. pre-training, post-training and follow-up. This review was conducted according to the PRISMA guidelines (PROSPERO: CRD42022348885). Electronic databases were searched from conception to March 2023. Following initial screening, 24 studies were eligible for inclusion in the qualitative synthesis and 20 could be included in the meta-analysis, of which 5 studies concerned motor sequence learning (total n = 186) and 15 working memory training (total n = 650). Results were pooled using an inverse variance random effects meta-analysis. The findings showed no statistically significant additional effects of tDCS over placebo on motor sequence learning outcomes. However, there was a strong trend showing that tDCS boosted working memory training, although methodological limitations and some heterogeneity were also apparent. In conclusion, the present findings do not support wide implementation of tDCS as an add-on to motor sequence training at the moment, but the promising results on cognitive training warrant further investigations.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Doença de Parkinson/terapia , Aprendizagem , Memória de Curto Prazo , Treino Cognitivo
4.
J Neuroeng Rehabil ; 20(1): 154, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951867

RESUMO

BACKGROUND: Robots have been proposed as tools to measure bimanual coordination in children with unilateral cerebral palsy (uCP). However, previous research only examined one task and clinical interpretation remains challenging due to the large amount of generated data. This cross-sectional study aims to examine bimanual coordination by using multiple bimanual robotics tasks in children with uCP, and their relation to task execution and unimanual performance. METHODS: The Kinarm exoskeleton robot was used in 50 children with uCP (mean age: 11 years 11 months ± 2 years 10 months, Manual Ability Classification system (MACS-levels: l = 27, ll = 16, lll = 7)) and 50 individually matched typically developing children (TDC). All participants performed three tasks: object-hit (hit falling balls), ball-on-bar (balance a ball on a bar while moving to a target) and circuit task (move a cursor along a circuit by making horizontal and vertical motions with their right and left hand, respectively). Bimanual parameters provided information about bimanual coupling and interlimb differences. Differences between groups and MACS-levels were investigated using ANCOVA with age as covariate (α < 0.05, [Formula: see text]). Correlation analysis (r) linked bimanual coordination to task execution and unimanual parameters. RESULTS: Children with uCP exhibited worse bimanual coordination compared to TDC in all tasks (p ≤ 0.05, [Formula: see text] = 0.05-0.34). The ball-on-bar task displayed high effect size differences between groups in both bimanual coupling and interlimb differences (p < 0.001, [Formula: see text] = 0.18-0.36), while the object-hit task exhibited variations in interlimb differences (p < 0.001, [Formula: see text] = 0.22-0.34) and the circuit task in bimanual coupling (p < 0.001, [Formula: see text] = 0.31). Mainly the performance of the ball-on-bar task (p < 0.05, [Formula: see text] = 0.18-0.51) was modulated by MACS-levels, showing that children with MACS-level lll had worse bimanual coordination compared to children with MACS-level l and/or II. Ball-on-bar outcomes were highly related to task execution (r = - 0.75-0.70), whereas more interlimb differences of the object-hit task were moderately associated with a worse performance of the non-dominant hand (r = - 0.69-(- 0.53)). CONCLUSION: This study gained first insight in important robotic tasks and outcome measures to quantify bimanual coordination deficits in children with uCP. The ball-on-bar task showed the most discriminative ability for both bimanual coupling and interlimb differences, while the object-hit and circuit tasks are unique to interlimb differences and bimanual coupling, respectively.


Assuntos
Paralisia Cerebral , Exoesqueleto Energizado , Robótica , Humanos , Criança , Paralisia Cerebral/complicações , Estudos Transversais , Mãos
5.
J Neurophysiol ; 127(2): 474-492, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936521

RESUMO

The pressure of our own finger on the arm feels differently than the same pressure exerted by an external agent: the latter involves just touch, whereas the former involves a combination of touch and predictive output from the internal model of the body. This internal model predicts the movement of our own finger, and hence the intensity of the sensation of the finger press is decreased. A decrease in intensity of the self-produced stimulus is called sensory attenuation. It has been reported that, because of decreased proprioception with age and an increased reliance on the prediction of the internal model, sensory attenuation is increased in older adults. In this study, we used a force matching paradigm to test whether sensory attenuation is also present over the arm and whether aging increases sensory attenuation. We demonstrated that, although both young and older adults overestimate a self-produced force, older adults overestimate it even more, showing an increased sensory attenuation. In addition, we also found that both younger and older adults self-produce higher forces when activating the homologous muscles of the upper limb. Although this is traditionally viewed as evidence for an increased reliance on internal model function in older adults because of decreased proprioception, proprioception appeared unimpaired in our older participants. This begs the question of whether an age-related decrease in proprioception is really responsible for the increased sensory attenuation observed in older people.NEW & NOTEWORTHY Forces generated externally (by the environment on the participant) and internally (by the participant on her/his body) are not perceived with the same intensity. Internally generated forces are perceived less intensely than externally generated ones. This difference in force sensation has been shown to be higher in elderly participants when the forces were applied on the fingers because of their impaired proprioception. Here we replicated this finding for the arm but suggest that it is unlikely to be linked to impaired proprioception.


Assuntos
Envelhecimento/fisiologia , Propriocepção/fisiologia , Percepção do Tato/fisiologia , Extremidade Superior/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Neurosci ; 40(20): 3995-4009, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32284337

RESUMO

Transcranial magnetic stimulation studies have highlighted that corticospinal excitability is increased during observation of object lifting, an effect termed "motor resonance." This facilitation is driven by movement features indicative of object weight, such as object size or observed movement kinematics. Here, we investigated in 35 humans (23 females) how motor resonance is altered when the observer's weight expectations, based on visual information, do not match the actual object weight as revealed by the observed movement kinematics. Our results highlight that motor resonance is not robustly driven by object weight but easily masked by a suppressive mechanism reflecting the correctness of weight expectations. Subsequently, we investigated in 24 humans (14 females) whether this suppressive mechanism was driven by higher-order cortical areas. For this, we induced "virtual lesions" to either the posterior superior temporal sulcus (pSTS) or dorsolateral prefrontal cortex (DLPFC) before having participants perform the task. Importantly, virtual lesion of pSTS eradicated this suppressive mechanism and restored object weight-driven motor resonance. In addition, DLPFC virtual lesion eradicated any modulation of motor resonance. This indicates that motor resonance is heavily mediated by top-down inputs from both pSTS and DLPFC. Together, these findings shed new light on the theorized cortical network driving motor resonance. That is, our findings highlight that motor resonance is not only driven by the putative human mirror neuron network consisting of the primary motor and premotor cortices as well as the anterior intraparietal sulcus, but also by top-down input from pSTS and DLPFC.SIGNIFICANCE STATEMENT Observation of object lifting activates the observer's motor system in a weight-specific fashion: Corticospinal excitability is larger when observing lifts of heavy objects compared with light ones. Interestingly, here we demonstrate that this weight-driven modulation of corticospinal excitability is easily suppressed by the observer's expectations about object weight and that this suppression is mediated by the posterior superior temporal sulcus. Thus, our findings show that modulation of corticospinal excitability during observed object lifting is not robust but easily altered by top-down cognitive processes. Finally, our results also indicate how cortical inputs, originating remotely from motor pathways and processing action observation, overlap with bottom-up motor resonance effects.


Assuntos
Antecipação Psicológica/fisiologia , Remoção , Percepção de Peso/fisiologia , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Feminino , Humanos , Masculino , Neurônios-Espelho/fisiologia , Rede Nervosa/fisiologia , Observação , Córtex Pré-Frontal/fisiologia , Tratos Piramidais/fisiologia , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana , Percepção Visual/fisiologia , Adulto Jovem
7.
J Neurophysiol ; 126(4): 1326-1344, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346739

RESUMO

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.NEW & NOTEWORTHY Is proprioceptive acuity linked to amount of implicit motor adaptation across ages? The latter is larger in old compared with younger people? In light of reliability-based sensory integration, we hypothesized that this larger implicit adaptation was linked to an age-related lower reliability of proprioception. Over 2 experiments and 130 participants, we failed to find any evidence for this. We discussed alternative explanations for the increase in implicit adaptation with age and the validity of our proprioceptive assessment.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Atividade Motora/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Neurophysiol ; 125(4): 1348-1366, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471619

RESUMO

Observation of object lifting allows updating of internal object representations for object weight, in turn enabling accurate scaling of fingertip forces when lifting the same object. Here, we investigated whether lift observation also enables updating of internal representations for an object's weight distribution. We asked participants to lift an inverted T-shaped manipulandum, of which the weight distribution could be changed, in turns with an actor. Participants were required to minimize object roll (i.e., "lift performance") during lifting and were allowed to place their fingertips at self-chosen locations. The center of mass changed unpredictably every third to sixth trial performed by the actor, and participants were informed that they would always lift the same weight distribution as the actor. Participants observed either erroneous (i.e., object rolling toward its heavy side) or skilled (i.e., minimized object roll) lifts. Lifting performance after observation was compared with lifts without prior observation and with lifts after active lifting, which provided haptic feedback about the weight distribution. Our results show that observing both skilled and erroneous lifts convey an object's weight distribution similar to active lifting, resulting in altered digit positioning strategies. However, minimizing object roll on novel weight distributions was only improved after observing error lifts and not after observing skilled lifts. In sum, these findings suggest that although observing motor errors and skilled motor performance enables updating of digit positioning strategy, only observing error lifts enables changes in predictive motor control when lifting objects with unexpected weight distributions.NEW & NOTEWORTHY Individuals are able to extract an object's size and weight by observing interactions with objects and subsequently integrate this information in their own motor repertoire. Here, we show that this ability extrapolates to weight distributions. Specifically, we highlighted that individuals can perceive an object's weight distribution during lift observation but can only partially embody this information when planning their own actions.


Assuntos
Dedos/fisiologia , Remoção , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção de Tamanho/fisiologia , Percepção Visual/fisiologia , Percepção de Peso/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Comput Neurosci ; 49(3): 333-343, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901334

RESUMO

This study analyzed the characteristics of pursuit and assessed the influence of prior and visual information on eye velocity and saccades in amblyopic and control children, in comparison to adults. Eye movements of 41 children (21 amblyopes and 20 controls) were compared to eye movements of 55 adults (18 amblyopes and 37 controls). Participants were asked to pursue a target moving at a constant velocity. The target was either a 'standard' target, with a uniform color intensity, or a 'noisy' target, with blurry edges, to mimic the blurriness of an amblyopic eye. Analysis of pursuit patterns showed that the onset was delayed, and the gain was decreased in control children with a noisy target in comparison to amblyopic or control children with a standard target. Furthermore, a significant effect of prior and visual information on pursuit velocity and saccades was found across all participants. Moreover, the modulation of the effect of visual information on the pursuit velocity by group, that is amblyopes or controls with a standard target, and controls with a noisy target, was more limited in children. In other words, the effect of visual information was higher in control adults with a standard target compared to control children with the same target. However, in the case of a blurry target, either in control participants with a noisy target or in amblyopic participants with a standard target, the effect of visual information was larger in children.


Assuntos
Ambliopia , Movimentos Oculares , Adulto , Criança , Humanos , Modelos Neurológicos , Movimentos Sacádicos
10.
J Comput Neurosci ; 49(3): 357-369, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32944827

RESUMO

Prediction and time estimation are all but required for motor function in everyday life. In the context of eye movements, for instance, they allow predictive saccades and eye re-acceleration in anticipation of a target re-appearance. While the neural pathways involved are not fully understood, it is known that the frontal lobe plays an important role. As such, neurological disorders that affect it, such as frontotemporal (FTD) dementia, are likely to induce deficits in such movements. In this work, we study the performances of frontotemporal dementia patients in an oculomotor task designed to elicit predictive saccades at different rates, and compare them to young and older adults. Clear deficits in the production of predictive saccades were found in patients, in particular when the time between saccades was short (~500 ms). Furthermore, one asymptomatic C9ORF72 mutation bearer showed patterns of oculomotor behavior similar to FTD patients. He exhibited FTD symptoms within 3 years post-measure, suggesting that an impairment of oculomotor function could be an early clinical sign. Taken together, these results argue in favor of a role of the frontal lobe in predictive movements timing over short timescales, and suggest that predictive saccades in FTD patients warrant further investigation to fully assess their potential as a diagnostic aid.


Assuntos
Demência Frontotemporal , Idoso , Lobo Frontal , Humanos , Masculino , Modelos Neurológicos , Movimentos Sacádicos
11.
J Neurophysiol ; 124(1): 152-167, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459553

RESUMO

The cognitive component of motor adaptation declines with aging. Yet, in other motor tasks, older adults appear to rely on cognition to improve their motor performance. It is unknown why older adults are not able to do so in motor adaptation. To solve this apparent contradiction, we tested the possibility that older adults require more cognitive resources in unperturbed reaching compared with younger adults, which leaves fewer resources available for the cognitive aspect of motor adaptation. Two cognitive-motor dual-task experiments were designed to test this. The cognitive load of unperturbed reaching was assessed via dual-task costs during the baseline period of visuomotor rotation experiments, which provided us with an estimation of the amount of cognitive resources used during unperturbed reaching. However, we did not observe a link between dual-task costs and explicit adaptation in both experiments and, therefore, failed to confirm this hypothesis. Instead, we observed that explicit adaptation was mainly associated with visuospatial working memory capacity. This suggests that visuospatial working memory of an individual might be linked to the extent of explicit adaptation for young and older adults.NEW & NOTEWORTHY Our work addresses the contradiction between the age-related increase in the contribution of cognition for the execution of motor tasks and the age-related decrease in the cognitive component of motor adaptation. We predicted that elderly adults would need more cognitive resources for reaches and would, therefore, not have enough cognitive resources available for adaptation. Rather, we observed that visuospatial abilities could better explain the amount of cognition used by our participants for motor adaptation.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Função Executiva/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Neurophysiol ; 117(1): 117-122, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733598

RESUMO

Motor planning is the process of preparing the appropriate motor commands in order to achieve a goal. This process has largely been thought to occur before movement onset and traditionally has been associated with reaction time. However, in a virtual line bisection task we observed an overlap between movement planning and execution. In this task performed with a robotic manipulandum, we observed that participants (n = 30) made straight movements when the line was in front of them (near target) but often made curved movements when the same target was moved sideways (far target, which had the same orientation) in such a way that they crossed the line perpendicular to its orientation. Unexpectedly, movements to the far targets had shorter reaction times than movements to the near targets (mean difference: 32 ms, SE: 5 ms, max: 104 ms). In addition, the curvature of the movement modulated reaction time. A larger increase in movement curvature from the near to the far target was associated with a larger reduction in reaction time. These highly curved movements started with a transport phase during which accuracy demands were not taken into account. We conclude that an accuracy demand imposes a reaction time penalty if processed before movement onset. This penalty is reduced if the start of the movement consists of a transport phase and if the movement plan can be refined with respect to accuracy demands later in the movement, hence demonstrating an overlap between movement planning and execution. NEW & NOTEWORTHY: In the planning of a movement, the brain has the opportunity to delay the incorporation of accuracy requirements of the motor plan in order to reduce the reaction time by up to 100 ms (average: 32 ms). Such shortening of reaction time is observed here when the first phase of the movement consists of a transport phase. This forces us to reconsider the hypothesis that motor plans are fully defined before movement onset.


Assuntos
Formação de Conceito/fisiologia , Função Executiva/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
13.
J Neurophysiol ; 116(6): 2857-2868, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655964

RESUMO

Movement planning consists of choosing the intended endpoint of the movement and selecting the motor program that will bring the effector on the endpoint. It is widely accepted that movement endpoint is updated on a trial-by-trial basis with respect to the observed errors and that the motor program for a given movement follows the rules of optimal feedback control. In this article, we show clear limitations of these theories. First, participants in the current study could not tune their motor program appropriately for each individual trial. This was true even when the participants selected the width of the target that they reached toward or when they had learned the appropriate motor program previously. These data are compatible with the existence of a switching cost for motor planning, which relates to the drop in performance due to an imposed switch of motor programs. This cost of switching shares many features of costs reported in cognitive task switching experiments and, when tested in the same participants, was correlated with it. Second, we found that randomly changing the width of a target over the course of a reaching experiment prevents the motor system from updating the endpoint of movements on the basis of the performance on the previous trial if the width of the target has changed. These results provide new insights into the process of motor planning and how it relates to optimal control theory and to an action selection based on the reward consequences of the motor program rather than that based on the observed error.


Assuntos
Tomada de Decisões/fisiologia , Retroalimentação Psicológica/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Análise de Variância , Custos e Análise de Custo , Sinais (Psicologia) , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Testes Neuropsicológicos , Adulto Jovem
14.
J Neurophysiol ; 115(1): 301-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26510757

RESUMO

The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5-19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5-7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum.


Assuntos
Percepção de Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Acompanhamento Ocular Uniforme , Movimentos Sacádicos , Adolescente , Adulto , Criança , Desenvolvimento Infantil , Pré-Escolar , Medições dos Movimentos Oculares , Humanos , Estimulação Luminosa , Adulto Jovem
15.
Exp Brain Res ; 234(6): 1403-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26749181

RESUMO

Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.


Assuntos
Braço/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Acidente Vascular Cerebral/complicações
16.
J Neurophysiol ; 113(7): 2733-41, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25673736

RESUMO

Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations.


Assuntos
Adaptação Fisiológica/fisiologia , Retroalimentação Sensorial/fisiologia , Memória/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Braço/fisiologia , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Rotação , Adulto Jovem
17.
J Neurosci ; 33(44): 17301-13, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174663

RESUMO

The brain makes use of noisy sensory inputs to produce eye, head, or arm motion. In most instances, the brain combines this sensory information with predictions about future events. Here, we propose that Kalman filtering can account for the dynamics of both visually guided and predictive motor behaviors within one simple unifying mechanism. Our model relies on two Kalman filters: (1) one processing visual information about retinal input; and (2) one maintaining a dynamic internal memory of target motion. The outputs of both Kalman filters are then combined in a statistically optimal manner, i.e., weighted with respect to their reliability. The model was tested on data from several smooth pursuit experiments and reproduced all major characteristics of visually guided and predictive smooth pursuit. This contrasts with the common belief that anticipatory pursuit, pursuit maintenance during target blanking, and zero-lag pursuit of sinusoidally moving targets all result from different control systems. This is the first instance of a model integrating all aspects of pursuit dynamics within one coherent and simple model and without switching between different parallel mechanisms. Our model suggests that the brain circuitry generating a pursuit command might be simpler than previously believed and only implement the functional equivalents of two Kalman filters whose outputs are optimally combined. It provides a general framework of how the brain can combine continuous sensory information with a dynamic internal memory and transform it into motor commands.


Assuntos
Antecipação Psicológica/fisiologia , Modelos Neurológicos , Simulação de Dinâmica Molecular , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Acompanhamento Ocular Uniforme/fisiologia , Previsões , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Vias Visuais/fisiologia
18.
Exp Brain Res ; 232(11): 3379-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200178

RESUMO

Learning to control our movements is accompanied by neuroplasticity of motor areas of the brain. The mechanisms of neuroplasticity are diverse and produce what is referred to as the motor engram, i.e., the neural trace of the motor memory. Transcranial direct current stimulation (tDCS) alters the neural and behavioral correlates of motor learning, but its precise influence on the motor engram is unknown. In this review, we summarize the effects of tDCS on neural activity and suggest a few key principles: (1) Firing rates are increased by anodal polarization and decreased by cathodal polarization, (2) anodal polarization strengthens newly formed associations, and (3) polarization modulates the memory of new/preferred firing patterns. With these principles in mind, we review the effects of tDCS on motor control, motor learning, and clinical applications. The increased spontaneous and evoked firing rates may account for the modulation of dexterity in non-learning tasks by tDCS. The facilitation of new association may account for the effect of tDCS on learning in sequence tasks while the ability of tDCS to strengthen memories of new firing patterns may underlie the effect of tDCS on consolidation of skills. We then describe the mechanisms of neuroplasticity of motor cortical areas and how they might be influenced by tDCS. We end with current challenges for the fields of brain stimulation and motor learning.


Assuntos
Potencial Evocado Motor/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Humanos
19.
J Neurophysiol ; 109(1): 124-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23034365

RESUMO

Both abrupt and gradually imposed perturbations produce adaptive changes in motor output, but the neural basis of adaptation may be distinct. Here, we measured the state of the primary motor cortex (M1) and the corticospinal network during adaptation by measuring motor-evoked potentials (MEPs) before reach onset using transcranial magnetic stimulation of M1. Subjects reached in a force field in a schedule in which the field was introduced either abruptly or gradually over many trials. In both groups, by end of the training, muscles that countered the perturbation in a given direction increased their activity during the reach (labeled as the on direction for each muscle). In the abrupt group, in the period before the reach toward the on direction, MEPs in these muscles also increased, suggesting a direction-specific increase in the excitability of the corticospinal network. However, in the gradual group, these MEP changes were missing. After training, there was a period of washout. The MEPs did not return to baseline. Rather, in the abrupt group, off direction MEPs increased to match on direction MEPs. Therefore, we observed changes in corticospinal excitability in the abrupt but not gradual condition. Abrupt training includes the repetition of motor commands, and repetition may be the key factor that produces this plasticity. Furthermore, washout did not return MEPs to baseline, suggesting that washout engaged a new network that masked but did not erase the effects of previous adaptation. Abrupt but not gradual training appears to induce changes in M1 and/or corticospinal networks.


Assuntos
Adaptação Fisiológica/fisiologia , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Adolescente , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana
20.
J Neurophysiol ; 110(2): 358-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23615545

RESUMO

Motor skills improve with age from childhood into adulthood, and this improvement is reflected in the performance of smooth pursuit eye movements. In contrast, the saccadic system becomes mature earlier than the smooth pursuit system. Therefore, the present study investigates whether the early mature saccadic system compensates for the lower pursuit performance during childhood. To answer this question, horizontal eye movements were recorded in 58 children (ages 5-16 yr) and 16 adults (ages 23-36 yr) in a task that required the combination of smooth pursuit and saccadic eye movements. Smooth pursuit performance improved with age. However, children had larger average position error during target tracking compared with adults, but they did not execute more saccades to compensate for their low pursuit performance despite the early maturity of their saccadic system. This absence of error correction suggests that children have a lower sensitivity to visual errors compared with adults. This reduced sensitivity might stem from poor internal models and longer processing time in young children.


Assuntos
Envelhecimento/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Movimentos Sacádicos/fisiologia , Adolescente , Adulto , Fatores Etários , Animais , Criança , Pré-Escolar , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA