Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 224: 172-181, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30041096

RESUMO

The addition of organic residues to soil to increase its organic matter content is considered as a viable option for sustainable food production in soils sensitive to degradation and erosion. However, the recycling of these organic residues in agricultural soils needs to be previously appraised because they can modify the behaviour of pesticides when they are simultaneously applied in agricultural practices. This study evaluated the changes in the mobility and persistence of two herbicides, triasulfuron and prosulfocarb, after two repeated applications in field experimental plots in an unamended soil and one amended with green compost (GC) for seven months. Different factors were studied: i) soil without amendment (S), ii) soil amended with two doses of GC (∼12 t C ha-1, S + GC1 and 40 t C ha-1, S + GC2), and iii) soils unamended and amended with different irrigation conditions: non-irrigated and with additional irrigation (2.8 mm per week). After the first application of herbicides, the results initially indicated no significant effects of soil treatments or irrigation conditions for triasulfuron mobility in agreement with the residual concentrations in the soil profile. The effect of irrigation was noted after one month of herbicide application and the effect of the soil treatment was significant after two months because the persistence of triasulfuron in S + GC2 was maintained until 50% of the applied amount. For prosulfocarb, the influence of soil amendment was significant for the initial persistence of the herbicide in S + GC2, higher than in S or S + GC1, in agreement with its adsorption constants for this soil. However, dissipation or leaching of the herbicide over time was not inhibited in this soil. After the repeated application of herbicides, the influence of the treatment of soils and/or irrigation was significant for the leaching and dissipation of both herbicides. The initial dissipation/degradation or leaching of herbicides was higher than after the first application, although persistence was maintained after five months of application in amended soils for triasulfuron and in unamended and amended soils for prosulfocarb. The results confirm that high doses of GC increased the persistence of both herbicides. This practice may offer the possibility of applying a tailored dose of GC to soil for striking a balance between residual concentrations and the soil agronomic effect.


Assuntos
Herbicidas , Reciclagem , Solo , Agricultura , Poluentes do Solo
2.
J Environ Manage ; 207: 180-191, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174993

RESUMO

Herbicides are essential in agricultural systems for maintaining crop yields, as weeds compromise grain production. Furthermore, the application of organic amendments to soil is an increasingly frequent agricultural practice for avoiding irreversible soil degradation. However, this practice could modify the behaviour of the herbicides applied, with implications for their absorption by weeds. This study evaluated the dissipation, persistence and mobility of the herbicides triasulfuron and prosulfocarb in a sandy clay loam soil unamended and amended with green compost (GC) in a field experiment using single or combined commercial formulations of both herbicides. The study was carried out in experimental plots (eight treatments × three replicates) corresponding to unamended soil and soil amended with GC, untreated and treated with the herbicide formulations Logran®, Auros® and Auros Plus® over 100 days. The half-life (DT50) of triasulfuron applied individually was 19.4 days, and increased in the GC-amended soil (46.7 days) due to its higher adsorption by this soil, although non-significant differences between DT50 values were found when it was applied in combination with prosulfocarb. Prosulfocarb dissipated faster than triasulfuron under all the conditions assayed, but non-significant differences were observed for the different treatments. The analysis of the herbicides at different soil depths (0-50 cm) after their application confirmed the leaching of both herbicides to deeper soil layers under all conditions, although larger amounts of residues were found in the 0-10 and 10-20 cm layers. The application of GC to the soil increased the persistence of both herbicides, and prevented the rapid leaching of triasulfuron in the soil, but the leaching of prosulfocarb was not inhibited. The influence of single or combined formulations was observed for triasulfuron, but not for prosulfocarb. The results obtained highlight the interest of obtaining field data to design rational joint applications of GC and herbicides to prevent the possible decrease in their effectiveness for weeds or the risk of water contamination.


Assuntos
Carbamatos , Compostagem , Poluentes do Solo , Compostos de Sulfonilureia , Herbicidas , Solo
3.
Chemosphere ; 82(10): 1415-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183199

RESUMO

A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 m Lmin(-1) (all pesticides) and 3 m Lmin(-1) (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r=0.77; p<0.05) or the total volume leached (r=-0.78; p<0.05). The results reveal the efficacy of reactive wood barriers to decrease the leaching of pesticides from point sources of pollution depends on the type of wood, the hydrophobicity of the pesticide and the adopted water flow rate. Pine was more effective than oak in decreasing the leaching of hydrophobic pesticide linuron or in decreasing the maximum peak concentration of the less hydrophobic pesticides in soils. Efficacy of these wood barriers was limited for the least hydrophobic pesticide metalaxyl.


Assuntos
Acetamidas/análise , Alanina/análogos & derivados , Linurona/análise , Poluentes do Solo/análise , Acetamidas/química , Alanina/análise , Alanina/química , Fungicidas Industriais/análise , Fungicidas Industriais/química , Herbicidas/análise , Herbicidas/química , Cinética , Linurona/química , Dióxido de Silício/química , Poluentes do Solo/química , Poluição Química da Água/prevenção & controle , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA