Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 594(7862): 213-216, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108698

RESUMO

The electrification of heavy-duty transport and aviation will require new strategies to increase the energy density of electrode materials1,2. The use of anionic redox represents one possible approach to meeting this ambitious target. However, questions remain regarding the validity of the O2-/O- oxygen redox paradigm, and alternative explanations for the origin of the anionic capacity have been proposed3, because the electronic orbitals associated with redox reactions cannot be measured by standard experiments. Here, using high-energy X-ray Compton measurements together with first-principles modelling, we show how the electronic orbital that lies at the heart of the reversible and stable anionic redox activity can be imaged and visualized, and its character and symmetry determined. We find that differential changes in the Compton profile with lithium-ion concentration are sensitive to the phase of the electronic wave function, and carry signatures of electrostatic and covalent bonding effects4. Our study not only provides a picture of the workings of a lithium-rich battery at the atomic scale, but also suggests pathways to improving existing battery materials and designing new ones.

2.
Small ; : e2405259, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058218

RESUMO

This study investigates mechanochemical synthesis and cation-disordering mechanism of wurtzite-type Li3VO4 (LVO), highlighting its promise as a high-performance anode material for lithium-ion batteries and hybrid supercapacitors. Mechanochemical treatment of pristine LVO using a high-energy ball mill results in a "pure cation-disordered" LVO phase, allowing for meticulous analysis of cation arrangement. The X-ray and neutron diffraction study demonstrates progressive loss of order in LVO crystal with increasing milling duration. High-resolution transmission electron microscopy reveals disrupted lattice fringes, indicating cationic misalignment. Pair-distribution function analysis confirms loss of cation arrangements and the presence of short-range order. Combination of these multiple analytical techniques achieves a comprehensive understanding of cation regularity and clearly demonstrates order/disorder dichotomy in cation-disordered materials, ranging from short (<8 Å) to middle-long range (8-30 Å), using an integrated superstructure model of the cation-disordered LVO crystals. Electrochemical testing reveals that mechanochemically treated LVO exhibits superior rate capability, with a 70% capacity retention at a high current density of 50C-rate. Lithium diffusion coefficient measurements demonstrate enhanced lithium-ion mobility in the mechanochemically treated LVO, attributed to cation-disordering effect. These findings provide valuable insights into mechanochemical cation-disordering in LVO, presenting its potential as an efficient anode material for lithium-ion-based electrochemical energy storage.

3.
Nano Lett ; 22(11): 4603-4607, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612588

RESUMO

Experimental characterization of the nanostructure of metastable functional materials has attracted significant attention with recent advances in computational materials discovery. However, since metastable glass-ceramics are easily damaged by irradiation, damage-free nanoimaging has not been realized thus far. Herein, we propose novel high-contrast coherent diffractive imaging that quantitatively analyzes the intact internal nanostructure of metastable glass-ceramics using femtosecond X-ray pulses. The immersion of sample particles in a solvent helps enhance the reconstructed image contrast and allows us to distinguish an ∼7% electron density difference between an amorphous form and crystals. Furthermore, morphological operations with a band-pass filter quantitatively elucidate the depth information. The evaluated volume ratio of the amorphous to crystalline phases is ∼2.5:1 for the measured metastable (Li2S)70-(P2S5)30 glass-ceramic particle. Sulfide glass-ceramics are used as electrolytes for all-solid-state batteries, which are indispensable for reducing the carbon footprint. Our results will facilitate structural studies on fragile metastable materials with important scientific and industrial implications.

4.
J Synchrotron Radiat ; 24(Pt 5): 1006-1011, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862623

RESUMO

Compton scattering is one of the most promising probes for quantitating Li under in operando conditions, since high-energy X-rays, which have high penetration power, are used as the incident beam and the Compton-scattered energy spectrum has specific line-shapes for each element. An in operando quantitation method to determine the Li composition in electrodes has been developed by using line-shape (S-parameter) analysis of the Compton-scattered energy spectrum. In this study, S-parameter analysis has been applied to a commercial coin cell Li-ion rechargeable battery and the variation of the S-parameters during the charge/discharge cycle at the positive and negative electrodes has been obtained. By using calibration curves for Li composition in the electrodes, the change in Li composition of the positive and negative electrodes has been determined using the S-parameters simultaneously.

5.
Phys Chem Chem Phys ; 18(19): 13524-9, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27140839

RESUMO

Rechargeable magnesium batteries are deemed as the next-generation secondary battery systems because of their high theoretical capacity and the terrestrial abundance of magnesium, which is used as the anode in these batteries. The cathode material is an important factor to improve the energy density of the magnesium batteries. In this study, we investigate olivine-type MgMnSiO4 cathode materials owing to their high theoretical capacity (>300 mA h g(-1)). The low-temperature synthesis of MgMnSiO4 suppresses anti-site mixing between Mg and Mn, which drastically improves the charge-discharge capacities of the magnesium battery cathode. Our results show that the suppression of the degree of anti-site mixing between Mg and Mn enhances the diffusion of Mg(2+) during magnesium (de)insertion, and therefore, it is a dominant factor that affects the electrochemical performance of olivine-type MgMnSiO4.

6.
J Synchrotron Radiat ; 22(1): 161-4, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537603

RESUMO

Results of studies on Compton scattering imaging using synchrotron high-energy X-rays are reported. The technique is applied to a discharging coin cell, and the intensity of Compton scattered X-rays from the inside of the cell has been measured as a function of position and time. The position-time intensity map captures the migration of lithium ions in the positive electrode and reveals the structural change due to the volume expansion of the electrode. This experiment is a critical step in developing synchrotron-based Compton scattering imaging for electrochemical cells at a product level.

7.
Phys Chem Chem Phys ; 16(13): 6027-32, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24554035

RESUMO

A comprehensive investigation of the morphological and interfacial changes of Mn3O4 particles at different lithiation stages was performed in order to improve our understanding of the mechanism of the irreversible conversion reaction of Mn3O4. The micronization of Mn3O4 into a Mn-Li2O nanocomposite microstructure and the formation of a solid electrolyte interphase (SEI) on the Mn3O4 surface were carefully observed and characterized by combining high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption fine structure (XAFS) measurements. Accumulation of a thin SEI film of 2-5 nm thickness on the surfaces of the Mn3O4 particles due to their catalytic decomposition was observed at a depth of discharge (DOD) of 0%. As the DOD increases from 25% to 75%, the SEI layer composed of Li2CO3 and LiF continues to grow to 20-30 nm, and Li2O nanoparticles are clearly observed. At 100% DOD, the Mn-Li2O particles with diameters of 2-5 nm become totally encapsulated within a huge organic-inorganic coating structure, while the overall starting shape of the particles remains.


Assuntos
Compostos de Manganês/química , Nanocompostos/química , Óxidos/química , Fontes de Energia Elétrica , Eletrodos , Íons/química , Lítio/química , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
8.
J Am Chem Soc ; 135(16): 5938-41, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23560913

RESUMO

Lattice strain of Pt-based catalysts reflecting d-band status is the decisive factor of their catalytic activity toward oxygen reduction reaction (ORR). For the newly arisen monolayer Pt system, however, no general strategy to isolate the lattice strain has been achieved due to the short-range ordering structure of monolayer Pt shells on different facets of core nanoparticles. Herein, based on the extended X-ray absorption fine structure of monolayer Pt atoms on various single crystal facets, we propose an effective methodology for evaluating the lattice strain of monolayer Pt shells on core nanoparticles. The quantitative lattice strain establishes a direct correlation to monolayer Pt shell ORR activity.

9.
J Am Chem Soc ; 135(15): 5497-500, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23544671

RESUMO

The phase transition between LiFePO4 and FePO4 during nonequilibrium battery operation was tracked in real time using time-resolved X-ray diffraction. In conjunction with increasing current density, a metastable crystal phase appears in addition to the thermodynamically stable LiFePO4 and FePO4 phases. The metastable phase gradually diminishes under open-circuit conditions following electrochemical cycling. We propose a phase transition path that passes through the metastable phase and posit the new phase's role in decreasing the nucleation energy, accounting for the excellent rate capability of LiFePO4. This study is the first to report the measurement of a metastable crystal phase during the electrochemical phase transition of LixFePO4.

10.
J Am Chem Soc ; 135(30): 11125-30, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23802735

RESUMO

For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries.

11.
J Phys Chem Lett ; 14(31): 7027-7031, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523861

RESUMO

The use of a quasi-monolayer Pt shell (Ptqms) on a Pd core (Pdc) can reach cost and activity targets for the electrocatalytic oxygen-reduction reaction (ORR). The structure of PdcPtqms in the ORR will vary; however, direct observation of this issue is scarce. Here, during cyclic staircase voltammetry (ranging from 0.5 to 1.15 VRHE) in 0.1 M O2-saturated HClO4, the structure of PdcPtqms was monitored by in situ X-ray absorption spectroscopy. The qualitative and quantitative structural information clearly exhibits a complete picture that Ptqms will directly restructure to form Pt clusters and holes, while Pdc almost remains stable. These findings identify the initial structural evolution of PdcPtqms in the ORR, highlighting the importance of protecting Pdc in the development of high-performance PdcPtqms electrocatalysts.

12.
RSC Adv ; 13(25): 17114-17120, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37293473

RESUMO

Silicon has been considered to be one of the most promising anode active materials for next-generation lithium-ion batteries due to its large theoretical capacity (4200 mA h g-1, Li22Si5). However, silicon anodes suffer from degradation due to large volume expansion and contraction. To control the ideal particle morphology, an experimental method is required to analyze anisotropic diffusion and surface reaction phenomena. This study investigates the anisotropy of the silicon-lithium alloying reaction using electrochemical measurements and Si K-edge X-ray absorption spectroscopy on silicon single crystals. During the electrochemical reduction process in lithium-ion battery systems, the continuous formation of solid electrolyte interphase (SEI) films prevents the achievement of steady-state conditions. Instead, the physical contact between silicon single crystals and lithium metals can prevent the effect of SEI formation. The apparent diffusion coefficient and the surface reaction coefficient are determined from the progress of the alloying reaction analyzed by X-ray absorption spectroscopy. While the apparent diffusion coefficients show no clear anisotropy, the apparent surface reaction coefficient of Si (100) is more significant than that of Si (111). This finding indicates that the surface reaction of silicon governs the anisotropy of practical lithium alloying reaction for silicon anodes.

13.
Adv Sci (Weinh) ; 10(6): e2204672, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575151

RESUMO

Honeycomb-layered oxides with monovalent or divalent, monolayered cationic lattices generally exhibit myriad crystalline features encompassing rich electrochemistry, geometries, and disorders, which particularly places them as attractive material candidates for next-generation energy storage applications. Herein, global honeycomb-layered oxide compositions, Ag2 M2 TeO6 ( M = Ni , Mg , etc $M = \rm Ni, Mg, etc$ .) exhibiting Ag $\rm Ag$ atom bilayers with sub-valent states within Ag-rich crystalline domains of Ag6 M2 TeO6 and Ag $\rm Ag$ -deficient domains of Ag 2 - x Ni 2 TeO 6 ${\rm Ag}_{2 - x}\rm Ni_2TeO_6$ ( 0 < x < 2 $0 < x < 2$ ). The Ag $\rm Ag$ -rich material characterized by aberration-corrected transmission electron microscopy reveals local atomic structural disorders characterized by aperiodic stacking and incoherency in the bilayer arrangement of Ag $\rm Ag$ atoms. Meanwhile, the global material not only displays high ionic conductivity but also manifests oxygen-hole electrochemistry during silver-ion extraction. Within the Ag $\rm Ag$ -rich domains, the bilayered structure, argentophilic interactions therein and the expected Ag $\rm Ag$ sub-valent states ( 1 / 2 + , 2 / 3 + $1/2+, 2/3+$ , etc.) are theoretically understood via spontaneous symmetry breaking of SU(2)× U(1) gauge symmetry interactions amongst 3 degenerate mass-less chiral fermion states, justified by electron occupancy of silver 4 d z 2 $4d_{z^2}$ and 5s orbitals on a bifurcated honeycomb lattice. This implies that bilayered frameworks have research applications that go beyond the confines of energy storage.

14.
Nat Commun ; 14(1): 2112, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055401

RESUMO

Designing efficient catalyst for the oxygen evolution reaction (OER) is of importance for energy conversion devices. The anionic redox allows formation of O-O bonds and offers higher OER activity than the conventional metal sites. Here, we successfully prepare LiNiO2 with a dominant 3d8L configuration (L is a hole at O 2p) under high oxygen pressure, and achieve a double ligand holes 3d8L2 under OER since one electron removal occurs at O 2p orbitals for NiIII oxides. LiNiO2 exhibits super-efficient OER activity among LiMO2, RMO3 (M = transition metal, R = rare earth) and other unary 3d catalysts. Multiple in situ/operando spectroscopies reveal NiIII→NiIV transition together with Li-removal during OER. Our theory indicates that NiIV (3d8L2) leads to direct O-O coupling between lattice oxygen and *O intermediates accelerating the OER activity. These findings highlight a new way to design the lattice oxygen redox with enough ligand holes created in OER process.

15.
J Synchrotron Radiat ; 18(Pt 6): 919-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21997918

RESUMO

Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.

16.
Phys Chem Chem Phys ; 13(37): 16637-43, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21850304

RESUMO

The electrical conduction mechanism of mixed conductive perovskite oxides, La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ), for cathode materials of solid oxide fuel cells has been investigated from electronic structural changes during oxygen vacancy formation. La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) was annealed under various oxygen partial pressures p(O(2))s at 1073 K and quenched. Iodometric titration indicated that the oxygen nonstoichiometry of La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) depended on the annealing p(O(2)), with more oxygen vacancies introduced at lower than at higher p(O(2))s. X-Ray absorption spectroscopic measurements were performed at the O K-, Co L-, Fe L-, Co K-, and Fe K-edges. The valence states of the Co and Fe ions were investigated by the X-ray absorption near edge structure (XANES) at the Co and Fe L(III)-edges. While the Fe average valence was almost constant, the valence of the Co ions decreased with oxygen vacancy introduction. The O K-edge XANES spectra indicated that electrons were injected into the Co 3d/O 2p hybridization state with oxygen vacancy introduction. Both absorption edges at the Co and Fe K-edge XANES shifted towards lower energies with oxygen vacancy introduction. The shift at the Co K-edge resulted from the decrease in the Co average valence and that at the Fe K-edge appeared to be caused by changes in the coordination environment around the Fe ions. The total conductivity of La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-δ) decreased with decreasing p(O(2)), due to a decreasing hole concentration.

17.
Sci Rep ; 10(1): 7362, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355213

RESUMO

The high anodic stability of electrolytes for rechargeable magnesium batteries enables the use of new positive electrodes, which can contribute to an increase in energy density. In this study, novel Ph3COMgCl-, Ph3SiOMgCl-, and B(OMgCl)3-based electrolytes were prepared with AlCl3 in triglyme. The Ph3COMgCl-based electrolyte showed anodic stability over 3.0 V vs. Mg but was chemically unstable, whereas the Ph3SiOMgCl-based electrolyte was chemically stable but featured lower anodic stability than the Ph3COMgCl-based electrolyte. Advantageously, the B(OMgCl)3-based electrolyte showed both anodic stability over 3.0 V vs. Mg (possibly due to the Lewis acidic nature of B in B(OMgCl)3) and chemical stability (possibly due to the hard acid character of B(OMgCl)3). B(OMgCl)3, which was prepared by reacting boric acid with a Grignard reagent, was characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and X-ray absorption spectroscopy (XAS). The above analyses showed that B(OMgCl)3 has a complex structure featuring coordinated tetrahydrofuran molecules. 27Al NMR spectroscopy and Al K-edge XAS showed that when B(OMgCl)3 was present in the electrolyte, AlCl3 and AlCl2+ species were converted to AlCl4-. Mg K-edge XAS showed that the Mg species in B(OMgCl)3-based electrolytes are electrochemically positive. As a rechargeable magnesium battery, the full cell using the B(OMgCl)3-based electrolyte and a Mo6S8 Chevrel phase cathode showed stable charge-discharge cycles. Thus, B(OMgCl)3-based electrolytes, the anodic stability of which can be increased to ~3 V by the use of appropriate battery materials, are well suited for the development of practical Mg battery cathodes.

18.
Sci Adv ; 6(25): eaax7236, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596439

RESUMO

An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li2RuO3 as a lithium-excess model material with Li2SO4, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li2RuO3-Li2SO4 matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries.

19.
Nat Commun ; 9(1): 3823, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237549

RESUMO

Rechargeable potassium-ion batteries have been gaining traction as not only promising low-cost alternatives to lithium-ion technology, but also as high-voltage energy storage systems. However, their development and sustainability are plagued by the lack of suitable electrode materials capable of allowing the reversible insertion of the large potassium ions. Here, exploration of the database for potassium-based materials has led us to discover potassium ion conducting layered honeycomb frameworks. They show the capability of reversible insertion of potassium ions at high voltages (~4 V for K2Ni2TeO6) in stable ionic liquids based on potassium bis(trifluorosulfonyl) imide, and exhibit remarkable ionic conductivities e.g. ~0.01 mS cm-1 at 298 K and ~40 mS cm-1 at 573 K for K2Mg2TeO6. In addition to enlisting fast potassium ion conductors that can be utilised as solid electrolytes, these layered honeycomb frameworks deliver the highest voltages amongst layered cathodes, becoming prime candidates for the advancement of high-energy density potassium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA