Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2402689121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954550

RESUMO

Climate warming is causing widespread deglaciation and pioneer soil formation over glacial deposits. Melting glaciers expose rocky terrain and glacial till sediment that is relatively low in biomass, oligotrophic, and depleted in nutrients. Following initial colonization by microorganisms, glacial till sediments accumulate organic carbon and nutrients over time. However, the mechanisms driving soil nutrient stabilization during early pedogenesis after glacial retreat remain unclear. Here, we traced amino acid uptake by microorganisms in recently deglaciated high-Arctic soils and show that fungi play a critical role in the initial stabilization of the assimilated carbon. Pioneer basidiomycete yeasts were among the predominant taxa responsible for carbon assimilation, which were associated with overall high amino acid use efficiency and reduced respiration. In intermediate- and late-stage soils, lichenized ascomycete fungi were prevalent, but bacteria increasingly dominated amino acid assimilation, with substantially decreased fungal:bacterial amino acid assimilation ratios and increased respiration. Together, these findings demonstrate that fungi are important drivers of pedogenesis in high-Arctic ecosystems that are currently subject to widespread deglaciation from global warming.


Assuntos
Carbono , Fungos , Camada de Gelo , Microbiologia do Solo , Solo , Regiões Árticas , Carbono/metabolismo , Solo/química , Fungos/metabolismo , Camada de Gelo/microbiologia , Aquecimento Global , Aminoácidos/metabolismo , Ecossistema
2.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288516

RESUMO

Mounting evidence suggests that animals and their associated bacteria interact via intricate molecular mechanisms, and it is hypothesized that disturbances to the microbiome influence animal development. Here, we show that the loss of a key photosymbiont (i.e., bleaching) upon shading correlates with a stark body-plan reorganization in the common aquarium cyanosponge Lendenfeldia chondrodes. The morphological changes observed in shaded sponges include the development of a thread-like morphology that contrasts with the flattened, foliose morphology of control specimens. The microanatomy of shaded sponges markedly differed from that of control sponges, with shaded specimens lacking a well-developed cortex and choanosome. Also, the palisade of polyvacuolar gland-like cells typical in control specimens was absent in shaded sponges. The morphological changes observed in shaded specimens are coupled with broad transcriptomic changes and include the modulation of signaling pathways involved in animal morphogenesis and immune response, such as the Wnt, transforming growth factor ß (TGF-ß), and TLR-ILR pathways. This study provides a genetic, physiological, and morphological assessment of the effect of microbiome changes on sponge postembryonic development and homeostasis. The correlated response of the sponge host to the collapse of the population of symbiotic cyanobacteria provides evidence for a coupling between the sponge transcriptomic state and the state of its microbiome. This coupling suggests that the ability of animals to interact with their microbiomes and respond to microbiome perturbations has deep evolutionary origins in this group.


Assuntos
Microbiota , Poríferos , Animais , Bactérias/genética , Evolução Biológica , Simbiose
3.
Environ Microbiol ; 25(8): 1549-1558, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36856556

RESUMO

In this report, I describe a method for rapid measurement of total adenylate (ATP + ADP + AMP) in marine sediment samples for estimating microbial biomass. A simple 'boil and dilute' method is described here, whereby adding boiled MilliQ water to sediments increases the detection limit for ATP + ADP + AMP up to 100-fold. The lowered detection limit of this method enabled the detection ATP + ADP + AMP in relatively low-biomass sub-seafloor sediment cores with 104 16S rRNA gene copies per gram. Concentrations of ATP + ADP + AMP correlated with 16S rRNA gene concentrations from bacteria and archaea across six different sites that range in water depth from 1 to 6000 m indicating that the ATP + ADP + AMP method can be used as an additional biomass proxy. In deep sea microbial communities, the ratio of ATP + ADP + AMP concentrations to 16S rRNA genes >1 m below seafloor was significantly lower compared to communities in the upper 30 cm of sediment, which may be due to reduced cell sizes and or lower ATP + ADP + AMP concentrations per cell in the deep sea sub-seafloor biosphere. The boil and dilute method for ATP + ADP + AMP is demonstrated here to have a detection limit sufficient for measuring low biomass communities from deep sea sub-seafloor cores. The method can be applied to frozen samples, enabling measurements of ATP + ADP + AMP from frozen sediment cores stored in core repositories from past and future international drilling campaigns.


Assuntos
Archaea , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Archaea/genética , Sedimentos Geológicos/microbiologia , Água , Trifosfato de Adenosina , Filogenia
4.
Appl Environ Microbiol ; 88(9): e0021622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404072

RESUMO

Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth's climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.


Assuntos
Bicarbonatos , Microbiota , Carbono/metabolismo , DNA , Isótopos , Nitrogênio/metabolismo , Oceanos e Mares , Oxigênio/metabolismo , RNA Ribossômico 16S , Água do Mar/microbiologia , Enxofre/metabolismo , Água/química
5.
Environ Microbiol ; 21(1): 374-388, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411473

RESUMO

Fungi living in sediments ('mycobenthos') are hypothesized to play a role in the degradation of organic matter deposited at the land-sea interface, but the environmental factors influencing the mycobenthos are poorly understood. We used mock community calibrated Illumina sequencing to show that the mycobenthos community structure in a coastal lagoon was significantly changed after exposure to a lignocellulose extract and subsequent development of benthic anoxia over a relatively short (10 h) incubation. Saprotrophic taxa dominated and were selected for under benthic anoxia, specifically Aquamyces (Chytridiomycota) and Orbilia (Ascomycota), implicating these genera as important benthic saprotrophs. Protein encoding genes involved in energy and biomass production from Fungi and the fungal-analogue group Labyrinthulomycetes had the highest increase in expression with the added organic matter compared with all other groups, indicating that lignocellulose stimulates metabolic activity in the mycobenthos. Flavobacteria dominated the active bacterial community that grew rapidly with the lignocellulose extract and crashed sharply upon O2 depletion. Our findings indicate that the diversity, activity and trophic potential of the mycobenthos changes rapidly in response to organic matter and decreasing O2 concentrations, which together with heterotrophic Flavobacteria, undergo 'boom and bust' dynamics during lignocellulose degradation in estuarine ecosystems.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Quitridiomicetos/crescimento & desenvolvimento , Substâncias Húmicas/microbiologia , Lignina/metabolismo , Micobioma/fisiologia , Estramenópilas/crescimento & desenvolvimento , Anaerobiose , Ascomicetos/isolamento & purificação , Biomassa , Quitridiomicetos/isolamento & purificação , Ecossistema , Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/metabolismo , Processos Heterotróficos , Oxigênio/metabolismo , Estramenópilas/metabolismo
6.
Nature ; 499(7457): 205-8, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23760485

RESUMO

Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.


Assuntos
Sedimentos Geológicos/microbiologia , Transcriptoma/genética , Anaerobiose , Biomassa , Divisão Celular/genética , Contagem de Colônia Microbiana , Reparo do DNA/genética , DNA Complementar/análise , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Oceanos e Mares , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfatos/metabolismo , Microbiologia da Água
7.
Environ Microbiol ; 25(1): 91-96, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36163700

Assuntos
Ecologia , Ecossistema
8.
Environ Microbiol ; 20(12): 4297-4313, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29968357

RESUMO

Ferruginous (Fe-rich, SO4 -poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.


Assuntos
Sedimentos Geológicos/química , Ferro/química , Lagos , Microbiota , Regulação Bacteriana da Expressão Gênica , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Metagenômica , Metano/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
9.
Environ Microbiol ; 20(2): 815-827, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215213

RESUMO

Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean.


Assuntos
Clorófitas/fisiologia , Cilióforos/metabolismo , Cadeia Alimentar , Fitoplâncton/fisiologia , Estramenópilas/metabolismo , Clorófitas/genética , Cilióforos/genética , Isótopos , Oceanos e Mares , Oceano Pacífico , Fotossíntese , Filogenia , Fitoplâncton/genética , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Água do Mar/parasitologia , Análise de Sequência de DNA , Estramenópilas/genética
10.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980553

RESUMO

Benthic environments harbor highly diverse and complex microbial communities that control carbon fluxes, but the role of specific uncultivated microbial groups in organic matter turnover is poorly understood. In this study, quantitative DNA stable isotope probing (DNA-qSIP) was used for the first time to link uncultivated populations of bacteria and archaea to carbon turnover in lacustrine surface sediments. After 1-week incubations in the dark with [13C]bicarbonate, DNA-qSIP showed that ammonia-oxidizing archaea (AOA) were the dominant active chemolithoautotrophs involved in the production of new organic matter. Natural 13C-labeled organic matter was then obtained by incubating sediments in the dark for 2.5 months with [13C]bicarbonate, followed by extraction and concentration of high-molecular-weight (HMW) (>50-kDa) organic matter. qSIP showed that the labeled organic matter was turned over within 1 week by 823 microbial populations (operational taxonomic units [OTUs]) affiliated primarily with heterotrophic Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes However, several OTUs affiliated with the candidate microbial taxa Latescibacteria, Omnitrophica, Aminicentantes, Cloacimonates, AC1, Bathyarchaeota, and Woesearchaeota, groups known only from genomic signatures, also contributed to biomass turnover. Of these 823 labeled OTUs, 52% (primarily affiliated with Proteobacteria) also became labeled in 1-week incubations with [13C]bicarbonate, indicating that they turned over carbon faster than OTUs that were labeled only in incubations with 13C-labeled HMW organic matter. These taxa consisted primarily of uncultivated populations within the Firmicutes, Bacteroidetes, Verrucomicrobia, and Chloroflexi, highlighting their ecological importance. Our study helps define the role of several poorly understood, uncultivated microbial groups in the turnover of benthic carbon derived from "dark" primary production.IMPORTANCE Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ "dark" primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bicarbonatos/química , Bicarbonatos/metabolismo , Carbono/química , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Crescimento Quimioautotrófico , Água Doce/química , Sedimentos Geológicos/química , Processos Heterotróficos , Filogenia
11.
Proc Natl Acad Sci U S A ; 112(39): 12036-41, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26324888

RESUMO

Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Fósseis , Fontes Hidrotermais , Microbiota , Água do Mar/química , Oceano Atlântico , Biomassa , Carbonato de Cálcio/química , Carbono/química , Cromatografia Líquida de Alta Pressão , Hidróxido de Magnésio/química , Espectrometria de Massas , Paleontologia , Água do Mar/microbiologia , Temperatura
12.
Proc Natl Acad Sci U S A ; 112(4): 1173-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25587132

RESUMO

Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.


Assuntos
Archaea , Proteínas Arqueais , Regulação da Expressão Gênica em Archaea/fisiologia , Proteoma , Proteômica , Microbiologia da Água , Sequência de Aminoácidos , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Metagenômica , Dados de Sequência Molecular , Oceanos e Mares , Proteoma/biossíntese , Proteoma/genética
13.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28778897

RESUMO

Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum morphotypes moved in continual flux, yet they consistently inhabited separate locations, displaying significant anticorrelation. Rod-shaped MTB were initially concentrated toward the northern end of the aquaria, but at the end of the experiment, they were most densely populated toward the south. The finding that the total number of MTB cells increased over time during the experiment argues that population reorganization arose from relative changes in cell division and death and not from migration. The maximum net growth rates were 10, 3, and 1 doublings day-1 and average net growth rates were 0.24, 0.11, and 0.02 doublings day-1 for MTB cocci, MTB spirilla, and rod-shaped MTB, respectively; minimum growth rates for all three morphotypes were -0.03 doublings day-1 Our results suggest that MTB cocci and MTB spirilla occupy distinctly different niches: their horizontal positioning in sediment is anticorrelated and under constant flux.IMPORTANCE Little is known about the horizontal distribution of magnetotactic bacteria in sediment or how the distribution changes over time. We therefore measured three dominant magnetotactic bacterium morphotypes at 36 places in two replicate aquaria each month for 7 months. We found that the spatial positioning of population centers changed over time and that the two most abundant morphotypes (MTB cocci and MTB spirilla) occupied distinctly different niches in the aquaria. Maximum and average growth and death rates were quantified for each of the three morphotypes based on 72 sites that were measured six times. The findings provided novel insight into the differential behavior of noncultured magnetotactic bacteria.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ecossistema , Água Doce/microbiologia , Magnetismo , Magnetossomos/genética , Magnetossomos/metabolismo , RNA Ribossômico 16S/genética
14.
Proc Natl Acad Sci U S A ; 110(21): 8609-14, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650351

RESUMO

The complex interplay of climate shifts over Eurasia and global sea level changes modulates freshwater and saltwater inputs to the Black Sea. The dynamics of the hydrologic changes from the Late Glacial into the Holocene remain a matter of debate, and information on how these changes affected the ecology of the Black Sea is sparse. Here we used Roche 454 next-generation pyrosequencing of sedimentary 18S rRNA genes to reconstruct the plankton community structure in the Black Sea over the last ca. 11,400 y. We found that 150 of 2,710 species showed a statistically significant response to four environmental stages. Freshwater chlorophytes were the best indicator species for lacustrine conditions (>9.0 ka B.P.), although the copresence of previously unidentified marine taxa indicated that the Black Sea might have been influenced to some extent by the Marmara Sea since at least 9.6 ka calendar (cal) B.P. Dinoflagellates, cercozoa, eustigmatophytes, and haptophytes responded most dramatically to the gradual increase in salinity after the latest marine reconnection and during the warm and moist mid-Holocene climatic optimum. According to paired analysis of deuterium/hydrogen (D/H) isotope ratios in fossil alkenones, salinity increased rapidly with the onset of the dry Subboreal after ~5.2 ka B.P., leading to an increase in marine fungi and the first occurrence of marine copepods. A gradual succession of dinoflagellates, diatoms, and chrysophytes occurred during the refreshening after ~2.5 ka cal B.P. with the onset of the cool and wet Subatlantic climate and recent anthropogenic perturbations.


Assuntos
Evolução Biológica , Plâncton/crescimento & desenvolvimento , RNA Ribossômico 18S/genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Oceanos e Mares , Plâncton/genética
15.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38632042

RESUMO

Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.


Assuntos
Bicarbonatos , Ciclo do Carbono , Isótopos de Carbono , Metagenoma , Microbiota , Bicarbonatos/metabolismo , Isótopos de Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Carbono/metabolismo , Fontes Hidrotermais/microbiologia , Água Subterrânea/microbiologia , Crescimento Quimioautotrófico , Archaea/genética , Archaea/metabolismo
16.
Sci Adv ; 9(5): eadg5448, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724219

RESUMO

Genomic records of genetic recombination and mutation rates indicate that freshwater ammonia-oxidizing archaea have evolved through paleoclimate and geohydrological history.


Assuntos
Archaea , Microbiota , Oxirredução , Archaea/genética , Água Doce , Amônia , Filogenia
17.
Geobiology ; 21(6): 758-769, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37615250

RESUMO

Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite ("white rust"), which quickly converted to chloride-containing fougerite ("green rust"). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.

18.
Sci Adv ; 9(39): eadi1884, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774032

RESUMO

Alkaline vents (AVs) are hypothesized to have been a setting for the emergence of life, by creating strong gradients across inorganic membranes within chimney structures. In the past, three-dimensional chimney structures were formed under laboratory conditions; however, no in situ visualization or testing of the gradients was possible. We develop a quasi-two-dimensional microfluidic model of AVs that allows spatiotemporal visualization of mineral precipitation in low-volume experiments. Upon injection of an alkaline fluid into an acidic, iron-rich solution, we observe a diverse set of precipitation morphologies, mainly controlled by flow rate and ion concentration. Using microscope imaging and pH-dependent dyes, we show that finger-like precipitates can facilitate formation and maintenance of microscale pH gradients and accumulation of dispersed particles in confined geometries. Our findings establish a model to investigate the potential of gradients across a semipermeable boundary for early compartmentalization, accumulation, and chemical reactions at the origins of life.

19.
Front Microbiol ; 14: 1063139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910224

RESUMO

Terrestrial hydrothermal springs and aquifers are excellent sites to study microbial biogeography because of their high physicochemical heterogeneity across relatively limited geographic regions. In this study, we performed 16S rRNA gene sequencing and metagenomic analyses of the microbial diversity of 11 different geothermal aquifers and springs across the tectonically active Biga Peninsula (Turkey). Across geothermal settings ranging in temperature from 43 to 79°C, one of the most highly represented groups in both 16S rRNA gene and metagenomic datasets was affiliated with the uncultivated phylum "Candidatus Bipolaricaulota" (former "Ca. Acetothermia" and OP1 division). The highest relative abundance of "Ca. Bipolaricaulota" was observed in a 68°C geothermal brine sediment, where it dominated the microbial community, representing 91% of all detectable 16S rRNA genes. Correlation analysis of "Ca. Bipolaricaulota" operational taxonomic units (OTUs) with physicochemical parameters indicated that salinity was the strongest environmental factor measured associated with the distribution of this novel group in geothermal fluids. Correspondingly, analysis of 23 metagenome-assembled genomes (MAGs) revealed two distinct groups of "Ca. Bipolaricaulota" MAGs based on the differences in carbon metabolism: one group encoding the bacterial Wood-Ljungdahl pathway (WLP) for H2 dependent CO2 fixation is selected for at lower salinities, and a second heterotrophic clade that lacks the WLP that was selected for under hypersaline conditions in the geothermal brine sediment. In conclusion, our results highlight that the biogeography of "Ca. Bipolaricaulota" taxa is strongly correlated with salinity in hydrothermal ecosystems, which coincides with key differences in carbon acquisition strategies. The exceptionally high relative abundance of apparently heterotrophic representatives of this novel candidate Phylum in geothermal brine sediment observed here may help to guide future enrichment experiments to obtain representatives in pure culture.

20.
Water Res ; 242: 120033, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244770

RESUMO

We fully sequenced the genomes of 16 Vibrio cultivars isolated from eel larvae, plastic marine debris (PMD), the pelagic brown macroalga Sargassum, and seawater samples collected from the Caribbean and Sargasso Seas of the North Atlantic Ocean. Annotation and mapping of these 16 bacterial genome sequences to a PMD-derived Vibrio metagenome-assembled genome created for this study showcased vertebrate pathogen genes closely-related to cholera and non-cholera pathovars. Phenotype testing of cultivars confirmed rapid biofilm formation, hemolytic, and lipophospholytic activities, consistent with pathogenic potential. Our study illustrates that open ocean vibrios represent a heretofore undescribed group of microbes, some representing potential new species, possessing an amalgam of pathogenic and low nutrient acquisition genes, reflecting their pelagic habitat and the substrates and hosts they colonize.


Assuntos
Água do Mar , Vibrio , Oceanos e Mares , Água do Mar/microbiologia , Vibrio/genética , Ecossistema , Oceano Atlântico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA