RESUMO
Background: The ORCHESTRA project, funded by the European Commission, aims to create a pan-European cohort built on existing and new large-scale population cohorts to help rapidly advance the knowledge related to the prevention of the SARS-CoV-2 infection and the management of COVID-19 and its long-term sequelae. The integration and analysis of the very heterogeneous health data pose the challenge of building an innovative technological infrastructure as the foundation of a dedicated framework for data management that should address the regulatory requirements such as the General Data Protection Regulation (GDPR). Methods: The three participating Supercomputing European Centres (CINECA - Italy, CINES - France and HLRS - Germany) designed and deployed a dedicated infrastructure to fulfil the functional requirements for data management to ensure sensitive biomedical data confidentiality/privacy, integrity, and security. Besides the technological issues, many methodological aspects have been considered: Berlin Institute of Health (BIH), Charité provided its expertise both for data protection, information security, and data harmonisation/standardisation. Results: The resulting infrastructure is based on a multi-layer approach that integrates several security measures to ensure data protection. A centralised Data Collection Platform has been established in the Italian National Hub while, for the use cases in which data sharing is not possible due to privacy restrictions, a distributed approach for Federated Analysis has been considered. A Data Portal is available as a centralised point of access for non-sensitive data and results, according to findability, accessibility, interoperability, and reusability (FAIR) data principles. This technological infrastructure has been used to support significative data exchange between population cohorts and to publish important scientific results related to SARS-CoV-2. Conclusions: Considering the increasing demand for data usage in accordance with the requirements of the GDPR regulations, the experience gained in the project and the infrastructure released for the ORCHESTRA project can act as a model to manage future public health threats. Other projects could benefit from the results achieved by ORCHESTRA by building upon the available standardisation of variables, design of the architecture, and process used for GDPR compliance.
RESUMO
BACKGROUND: Currently, there are between 300,000 and 500,000 childhood cancer survivors (CCSs) in Europe. A significant proportion is at high risk, and at least 60% of them develop adverse health-related outcomes that can appear several years after treatment completion. Many survivors are unaware of their personal risk, and there seems to be a general lack of information among healthcare providers about pathophysiology and natural history of treatment-related complications. This can generate incorrect or delayed diagnosis and treatments. METHOD: The Survivorship Passport (SurPass) consists of electronic documents, which summarise the clinical history of the childhood or adolescent cancer survivor. It was developed by paediatric oncologists of the PanCare and SIOPE networks and IT experts of Cineca, together with parents, patients, and survivors' organisations within the European Union-funded European Network for Cancer research in Children and Adolescents. It consists of a template of a web-based, simply written document, translatable in all European languages, to be given to each CCS. The SurPass provides a summary of each survivor's clinical history, with detailed information about the original cancer and of treatments received, together with personalised follow-up and screening recommendations based on guidelines published by the International Guidelines Harmonization Group and PanCareSurFup. RESULTS: The SurPass data schema contains a maximum of 168 variables and uses internationally approved nomenclature, except for radiotherapy fields, where a new classification was defined by radiotherapy experts. The survivor-specific screening recommendations are mainly based on treatment received and are automatically suggested, thanks to built-in algorithms. These may be adapted and further individualised by the treating physician in case of special disease and survivor circumstances. The SurPass was tested at the Istituto Giannina Gaslini, Italy, and received positive feedback. It is now being integrated at the institutional, regional and national level. CONCLUSIONS: The SurPass is potentially an essential tool for improved and more harmonised follow-up of CCS. It also has the potential to be a useful tool for empowering CCSs to be responsible for their own well-being and preventing adverse events whenever possible. With sufficient commitment on the European level, this solution should increase the capacity to respond more effectively to the needs of European CCS.