Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(6): 982-991, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265261

RESUMO

Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells. In this study, we examined whether CRL4b was required for T cells to expand and drive EAE. Mice lacking Cul4b (Cullin 4b) in T cells had reduced EAE symptoms and decreased inflammation during the peak of the disease. Significantly fewer CD4+ and CD8+ T cells were found in the CNS, particularly among the CD4+ T cell population producing IL-17A, IFN-γ, GM-CSF, and TNF-α. Additionally, Cul4b-deficient CD4+ T cells cultured in vitro with their wild-type counterparts were less likely to expand and differentiate into IL-17A- or IFN-γ-producing effector cells. When wild-type CD4+ T cells were activated in vitro in the presence of the recently developed CRL4 inhibitor KH-4-43, they exhibited increased apoptosis and DNA damage. Treatment of mice with KH-4-43 following EAE induction resulted in stabilized clinical scores and significantly reduced numbers of T cells and innate immune cells in the CNS compared with control mice. Furthermore, KH-4-43 treatment resulted in elevated expression of p21 and cyclin E2 in T cells. These studies support that therapeutic inhibition of CRL4 and/or CRL4-related pathways could be used to treat autoimmune disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Interleucina-17/metabolismo , Proteínas Culina/metabolismo , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 14(1): 7098, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925424

RESUMO

During infection, virus-specific CD8+ T cells undergo rapid bursts of proliferation and differentiate into effector cells that kill virus-infected cells and reduce viral load. This rapid clonal expansion can put T cells at significant risk for replication-induced DNA damage. Here, we find that c-Myc links CD8+ T cell expansion to DNA damage response pathways though the E3 ubiquitin ligase, Cullin 4b (Cul4b). Following activation, c-Myc increases the levels of Cul4b and other members of the Cullin RING Ligase 4 (CRL4) complex. Despite expressing c-Myc at high levels, Cul4b-deficient CD8+ T cells do not expand and clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) in vivo. Cul4b-deficient CD8+ T cells accrue DNA damage and succumb to proliferative catastrophe early after antigen encounter. Mechanistically, Cul4b knockout induces an accumulation of p21 and Cyclin E2, resulting in replication stress. Our data show that c-Myc supports cell proliferation by maintaining genome stability via Cul4b, thereby directly coupling these two interdependent pathways. These data clarify how CD8+ T cells use c-Myc and Cul4b to sustain their potential for extraordinary population expansion, longevity and antiviral responses.


Assuntos
Linfócitos T CD8-Positivos , Proteínas Culina , Vírus da Coriomeningite Linfocítica , Proteínas Proto-Oncogênicas c-myc , Linfócitos T CD8-Positivos/imunologia , Ciclo Celular , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA