RESUMO
Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species- and life-history-related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution-wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black-throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species- and life-history-related variation and correlates of building collisions, information that can help refine collision management.
Correlaciones de las Colisiones de Aves contra Edificios en Tres Países de América del Norte Resumen Las colisiones contra los edificios causan hasta mil millones de fatalidades de aves al año en los Estados Unidos y en Canadá. Sin embargo, los esfuerzos por reducir estas colisiones se beneficiarían con estudios realizados a grandes escalas espaciales en varios sitios de estudio con métodos estandarizados y considerando las variaciones relacionadas a la historia de vida y a la especie y las correlaciones de las colisiones. Abordamos estas necesidades de investigación por medio de una recolección coordinada de datos sobre las colisiones de aves contra edificios en los Estados Unidos (35), Canadá (3) y México (2). Recolectamos todos los cadáveres y los identificamos hasta especie. Después de retirar los registros de cadáveres no identificados, las especies sin estimaciones poblacionales a nivel distribución y las especies con distribuciones traslapadas en menos de diez sitios, nos quedamos con 269 cadáveres de 64 especies para el análisis. Estimamos la vulnerabilidad a colisiones para 40 especies con ≥2 fatalidades con base en la abundancia poblacional para América del Norte, el traslape de su distribución entre los sitios de estudio y el esfuerzo de muestreo. De las diez especies que identificamos como las más vulnerables a las colisiones, algunas han sido identificadas previamente (Setophaga caerulescens), y otras aparecieron por primera vez (Sitta carolinensis), posiblemente debido a que usamos una estrategia de muestreo más estandarizada que en los estudios previos. El tamaño del edificio y el área del vidrio estuvieron asociados positivamente con el número de colisiones para cinco de ocho especies con suficientes observaciones para ser analizadas independientemente. La vegetación alrededor de los edificios influyó sobre las colisiones solamente para una de esas ocho especies Catharus ustulatus). Las historias de vida pronosticaron las colisiones; el número de colisiones fue mayor para las especies migratorias, insectívoras y aquellas que habitan en las zonas boscosas. Nuestros resultados proporcionan una nueva perspectiva hacia las especies más vulnerables a las colisiones contra edificios, lo que las pone en una necesidad potencialmente mayor de atención conservacionista para reducir estas colisiones y de estudio de las variaciones relacionadas con la especie y la historia de vida y las correlaciones de las colisiones contra edificios, información que puede ayudar a refinar el manejo de colisiones.
Assuntos
Conservação dos Recursos Naturais , Aves Canoras , Animais , Canadá , México , América do Norte , Estados UnidosRESUMO
Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large-scale restoration efforts, which should additionally incorporate social and monetary cost-benefit considerations.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , México , ProbabilidadeRESUMO
The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Filogenia , Florestas , AgriculturaRESUMO
The escape behaviour, measured as flight initiation distance (FID; the distance at which individuals take flight when approached by a potential predator, usually a human in the study systems), is a measure widely used to study fearfulness and risk-taking in animals. Previous studies have shown significant differences in the escape behaviour of birds inhabiting cemeteries and urban parks in European cities, where birds seem to be shyer in the latter. We collected a regional dataset of the FID of birds inhabiting cemeteries and parks across Latin America in peri-urban, suburban and urban parks and cemeteries. FIDs were recorded for eighty-one bird species. Mean species-specific FIDs ranged from 1.9 to 19.7 m for species with at least two observations (fifty-seven species). Using Bayesian regression modelling and controlling for the phylogenetic relatedness of the FID among bird species and city and country, we found that, in contrast to a recent publication from Europe, birds escape earlier in cemeteries than parks in the studied Latin American cities. FIDs were also significantly shorter in urban areas than in peri-urban areas and in areas with higher human density. Our results indicate that some idiosyncratic patterns in animal fearfulness towards humans may emerge among different geographic regions, highlighting difficulties with scaling up and application of regional findings to other ecosystems and world regions. Such differences could be associated with intrinsic differences between the pool of bird species from temperate European and mostly tropical Latin American cities, characterized by different evolutionary histories, but also with differences in the historical process of urbanization.
Assuntos
Cemitérios , Ecossistema , Animais , Humanos , América Latina , Filogenia , Parques Recreativos , Teorema de Bayes , Aves , Cidades , Europa (Continente)RESUMO
In this study we focused on urban bird diversity across Mexico, a megadiverse country, with a special focus on the relative role of urban greenspaces and heavily-built sites. We considered a country-wide approach, including 24 different sized Mexican cities. Our aims were to describe the urban bird diversity in focal cities and further assess the relationships between it and the biogeographic region where cities are located, their size, elevation, and annual rainfall. Additionally, we evaluated differences in the functional composition of bird communities in both studied urban scenarios (i.e., urban greenspaces, heavily-built sites). Our results confirm that urban greenspaces are home to a large proportion of species when contrasted with heavily-built sites. While total species richness and species richness of greenspaces were related with the cities' biogeographic region -with higher species richness in the Neotropical region and Transition Zone-, the relationship did not hold true in heavily-built sites. We found that annual rainfall was negatively related to bird richness in heavily-built sites, suggesting that species from arid systems can be more tolerant to urbanization. Regarding the bird functional group assessment, results show a clear differentiation between the functional groups of greenspaces and those of heavily-built sites, with granivores and omnivores associated with the latter and a highly diverse array of functional groups associated with urban greenspaces.